1 | NIE H, MENG X, ZHANG Z, et al. Development of technology for producing bio-jet fuel from several feedstocks[J]. Scientia Sinica Chimica, 2014, 44:46-54. | 2 | LIU S, ZHU Q, GUAN Q, et al. Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts[J]. Bioresource Technology, 2015, 183: 93-100. | 3 | BORAWSKI P, BELDYCKA-BORAWSKA A, SZYMANSKA E J, et al. Development of renewable energy sources market and biofuels in the European Union[J]. Journal of Cleaner Production, 2019, 228: 467-484. | 4 | 师文. 新能源汽车的现状与发展趋势[J]. 农家参谋, 2019(19): 149. | 4 | SHI W. The status quo and development trend of new energy vehicles[J]. The Farmers Consultant, 2019(19):149. | 5 | CHIARAMONTI D, PRUSSI M, BUFFI M, et al. Sustainable bio kerosene: process routes and industrial demonstration activities in aviation biofuels[J]. Applied Energy, 2014, 136: 767-774. | 6 | WANG W, TAO L. Bio-jet fuel conversion technologies[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 801-822. | 7 | 孙元宝,邱贞慧. 航空生物燃料与《ASTM D7566-16》相关性分析[J]. 石油化工应用, 2017, 36(10): 119-122. | 7 | SUN Y B, QIU Z H. Correlation analysis of aviation biofuels with ASTM D7566-16[J]. Petrochemical Industry Application, 2017, 36(10): 119-122. | 8 | JACOBSON R A, KEEFE R F, SMITH A M S, et al. Multi‐spatial analysis of forest residue utilization for bioenergy[J]. Biofuels, Bioproducts and Biorefining, 2016, 10(5): 560-575. | 9 | KIM M Y, KIM J, LEE M, et al. Maximizing biojet fuel production from triglyceride: importance of the hydrocracking catalyst and separate deoxygenation/hydrocracking steps[J]. ACS Catalysis, 2017, 7(9): 6256-6267. | 10 | ZSCHIESCHE C, HIMSL D, RAKOCZY R, et al. Hydroisomerization of long-chain n-alkanes over bifunctional zeolites with 10-membered-and 12-membered-ring pores[J]. Chemical Engineering & Technology, 2018, 41(1): 199-204. | 11 | ZHANG M, CHEN Y, WANG L, et al. Shape selectivity in hydroisomerization of hexadecane over Pt supported on 10-ring zeolites: ZSM-22, ZSM-23, ZSM-35, and ZSM-48[J]. Industrial & Engineering Chemistry Research, 2016, 55(21): 6069-6078. | 12 | LANZAFAME P, PERATHONER S, CENTI G, et al. Effect of the structure and mesoporosity in Ni/zeolite catalysts for n‐hexadecane hydroisomerisation and hydrocracking[J]. ChemCatChem, 2017, 9(9): 1632-1640. | 13 | AKHMEDOV V M, AL-KHOWAITER S H. Recent advances and future aspects in the selective isomerization of high n-alkanes[J]. Catalysis Reviews, 2007, 49(1): 33-139. | 14 | 胡心悦,陈平,刘学军,等. 正构生物烷烃在Pt/ZSM-5催化剂上选择性加氢裂化制备液体生物燃料[J]. 化工进展, 2015, 34(4): 1007-1013. | 14 | HU X Y, CHEN P, LIU X J, et al. Production of liquid biofuels: normal bio-alkane selective hydrocracking over Pt/ZSM-5 catalysts [J]. Chemical Industry and Engineering Progress, 2015, 34(4): 1007-1013. | 15 | 郝亚杰,陈玉保,刘强,等. Pt/SAPO-11催化麻疯树油一步加氢制备生物航空煤油工艺条件的研究[J]. 中国油脂, 2017, 42(6): 110-114. | 15 | HAO Y J, CHEN Y B, LIU Q, et al. Preparation of biological aviation kerosene from Jatropha curcas oil by one-step hydrogenation with Pt/SAPO-11 as catalyst[J]. China Oils and Fats, 2017, 42(6): 110-114. | 16 | 刘国柱,韩立军,师亚威,等. Pt/SAPO-11催化费托合成油选择性加氢异构化制备替代喷气燃料[J]. 石油化工, 2015, 44(2): 144-149. | 16 | LIU G Z, HAN L J, SHI Y W, et al. Selective hydroisomerization of medium fraction of Fischer-Tropsch synthetic fuel over Pt/SAPO-11 for production of alternative jet fuel [J]. Petrochemical Technology, 2015, 44(2): 144-149. | 17 | SHI Y, ZHANG J, XING E, et al. Selective production of jet-fuel-range alkanes from palmitic acid over Ni/H-MCM-49 with two independent pore systems[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21341-21349. | 18 | GOODARZI F, HERRERO I P, KALANTZOPOULOS G N, et al. Synthesis of mesoporous ZSM-5 zeolite encapsulated in an ultrathin protective shell of silicalite-1 for MTH conversion[J]. Microporous and Mesoporous Materials, 2020, 292: 109730. | 19 | 谢素娟,彭建彪,徐龙伢,等. 以环己胺为模板剂的ZSM-35分子筛的合成及其催化性能[J]. 催化学报, 2003, 24(7): 531-534. | 19 | XIE S J, PENG J B, XU L Y, et al. Synthesis of ZSM-35 zeolite using cyclohexylamine as organic template and its catalytic performance[J]. Chinese Journal of Catalysis, 2003, 24(7): 531-534. | 20 | CHEN L, LU P, YUANG Y, et al. Hydrothermal synthesis of nanosized ZSM‐22 and their use in the catalytic conversion of methanol[J]. Chinese Journal of Catalysis, 2016, 37(8): 1381-1388. | 21 | 孟凡军. ZSM-5分子筛的合成、后处理及其催化甲醇制汽油的研究[D]. 天津:天津大学, 2017. | 21 | MENG F J. Synthesis and post-treatment of ZSM-5 and the application in the reaction of methanol to gasoline[D]. Tianjin: Tianjin University, 2017. | 22 | 汪哲明. SAPO基、长链烷烃择形异构化催化剂的结构设计[D]. 大连:中国科学院研究生院(大连化学物理研究所), 2006. | 22 | WANG Z M. Study on the shape-selective SAPO-based catalysts for hydroisomerization of long-chain paraffins[D].Dalian: Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2006. | 23 | 潘晖华,何鸣元,宋家庆. 分子筛材料研究及其在催化裂化过程中的应用前景[J]. 化学进展, 2006, 18(4): 501-506. | 23 | PAN H H, HE M Y, SONG J Q, et al. Advances in molecular sieves and application prospects of these materialsin fluid catalytic cracking fields [J]. Progress in Chemistry, 2006, 18(4): 501-506. | 24 | 常桥稳,陈家林,刘伟平,等. 贵金属改性固体超强酸催化剂研究进展[J]. 贵金属, 2013, 34(S1): 150-154. | 24 | CHANG Q W, CHEN J L, LIU W P, et al. Research progress in solid superacid catalysts modified with precious metals[J]. Precious Metals, 2013, 34(S1): 150-154. |
|