1 | 孟庆斌, 刘克良. 肽类自组装研究进展[J]. 化学进展, 2009, 21(11): 2411-2423. | 1 | MENG Q B, LIU K L. Progress in peptide self-assembly[J]. Progress in Chemistry, 2009, 21(11): 2411-2423. | 2 | 黄仁亮, 齐崴, 姜楠, 等. 肽基纳米材料及其应用[J]. 化学进展, 2010, 22(12): 2328-2337. | 2 | HUANG R L, QI W, JIANG N, et al. Peptide based nanomaterials and their technological applications[J]. Progress in Chemistry, 2010, 22(12): 2328-2337. | 3 | WHITESIDES G M, GRZYBOWSKI B. Self-assembly at all scales[J]. Science, 2002, 295(5564): 2418-2421. | 4 | GAO J, ZHAN J, YANG Z. Enzyme-instructed self-assembly (EISA) and hydrogelation of peptides[J]. Advanced Materials, 2019, 32(3): 1-13. | 5 | 张淑东. 自下而上与自上而下法构筑纳米结构及其物性研究[D]. 合肥:中国科学技术大学, 2010. | 5 | ZHANG S D. Construction of nanostructures via top down and bottom up strategy and their properties[D]. Hefei: University of Science and Technology of China, 2010. | 6 | CLARKE D E, PASHUCK E T, BERTAZZO S, et al. Self-healing, self-assembled β-sheet peptide-poly(γ-glutamic acid) hybrid hydrogels[J]. Journal of the American Chemical Society, 2017, 139(21): 7250-7255. | 7 | ZHANG S, PELLIGRA C I, FENG X, et al. Directed assembly of hybrid nanomaterials and nanocomposites[J]. Advanced Materials, 2018, 30(18): 1-23. | 8 | WHITESIDES G M, MATHIAS J P, SETO C T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures[J]. Science, 1991, 254(5036): 1312-1319. | 9 | WANG P, GAITANROS S, LEE S, et al. Programming self-assembly of DNA origami honeycomb two-dimensional lattices and plasmonic metamaterials[J]. Journal of the American Chemical Society, 2016, 138(24): 7733-7740. | 10 | PETKAU M K, BRUNSVELD L. Supramolecular chemical biology; bioactive synthetic self-assemblies[J]. Organic & Biomolecular Chemistry, 2013, 11(2): 219-232. | 11 | DRAPER E R, SU H, BRASNETT C, et al. Opening a can of worm (like micelle) s: the effect of temperature of solutions of functionalized dipeptides[J]. Angewandte Chemie: International Edition, 2017, 56(35): 10467-10470. | 12 | FRISCH H, BESENIUS P. pH-Switchable self-assembled materials[J]. Macromolecular Rapid Communications, 2015, 36(4): 346-363. | 13 | ZHANG Y H, HUANG L H, TING S X, et al. Effect of ionic strength on formation and microstructure of self-assembly globulin nanofibrils and gels[J]. Digest Journal of Nanomaterials and Biostructures, 2014, 9(3): 951-957. | 14 | ZOU R, WANG Q, WU J, et al. Peptide self-assembly triggered by metal ions[J]. Chemical Society Reviews, 2015, 44(15): 5200-5219. | 15 | YANG Z, LIANG G, XU B. Enzymatic hydrogelation of small molecules[J]. Accounts of Chemical Research, 2008, 41(2): 315-326. | 16 | ZHOU J, XU B. Enzyme-instructed self-assembly: a multistep process for potential cancer therapy[J]. Bioconjugate Chemistry, 2015, 26(6): 987-999. | 17 | CHEN Y, LIANG G. Enzymatic self-assembly of nanostructures for theranostics[J]. Theranostics, 2012, 2(2): 139-147. | 18 | SHIGEMITSU H, FUJISAKU T, TANAKA W, et al. An adaptive supramolecular hydrogel comprising self-sorting double nanofibre networks[J]. Nature Nanotechnology, 2018, 13(2): 165-172. | 19 | WEBBER M J, APPEL E A, MEIJER E W, et al. Supramolecular biomaterials[J]. Nature Materials, 2016, 15(1): 13-26. | 20 | PIRES R A, ABUL-HAIJA Y M, COSTA D S, et al. Controlling cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile[J]. Journal of the American Chemical Society, 2015, 137(2): 576-579. | 21 | IIDA N, DZUTSSEV A, STEWARD C A, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science, 2013, 342(6161): 967-970. | 22 | KUANG Y, SHI J, LI J, et al. Pericellular hydrogel/nanonets inhibit cancer cells[J]. Angewandte Chemie: International Edition, 2014, 53(31): 8104-8107. | 23 | TANAKA A, FUKUOKA Y, MORIMOTO Y, et al. Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator[J]. Journal of the American Chemical Society, 2015, 137(2): 770-775. | 24 | LI J, KUANG Y, SHI J, et al. Enzyme-instructed intracellular molecular self-assembly to boost activity of cisplatin against drug-resistant ovarian cancer cells[J]. Angewandte Chemie: International Edition, 2015, 54(45): 13307-13311. | 25 | ZHOU J, DU X, LI J, et al. Taurine boosts cellular uptake of small D-peptides for enzyme-instructed intracellular molecular self-assembly[J]. Journal of the American Chemical Society, 2015, 137(32): 10040-10043. | 26 | MIAO Q, BAI X, SHEN Y, et al. Intracellular self-assembly of nanoparticles for enhancing cell uptake[J]. Chemical Communications, 2012, 48(78): 9738-9740. | 27 | 黎占亭. 化学自组装之路: 我们能够走多远?[J]. 科学通报, 2016, 61(26): 2872-2875. | 27 | LI Z T. How far can we push chemical self-assembly? A personal interpretation[J]. Chinese Science Bulletin, 2016, 61(26): 2872-2875. | 28 | 高远. 活体内超分子自组装用于肿瘤诊断治疗的研究[C]//中国化学会. 中国化学会第30届学术年会摘要集——第二十八分会: 化学生物学. 中国: 中国化学会, 2016: 93. | 28 | GAO Y. Enzyme instructed supramolecular self-assembly for in vivo tumor theranostics[C]//Chinese Chemical Society. Abstracts of the 30th annual meeting of Chinese chemical society—28th Meeting: Chemical biology. China: Chinese Chemical Society, 2016:93. | 29 | ZHOU J, DU X, BERCIU C, et al. Enzyme-instructed self-assembly for spatiotemporal profiling of the activities of alkaline phosphatases on live cells[J]. Chem., 2016, 1(2): 246-263. | 30 | YE D, LIANG G, MA M L, et al. Controlling intracellular macrocyclization for the imaging of protease activity[J]. Angewandte Chemie: International Edition, 2011, 50(10): 2275-2279. | 31 | YE D, SHUHENDLER A J, CUI L, et al. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo[J]. Nature Chemistry, 2014, 6(6): 519-526. | 32 | WANG Y, HU X, WENG J, et al. A photoacoustic probe for the imaging of tumor apoptosis by caspase-mediated macrocyclization and self-assembly[J]. Angewandte Chemie, 2019, 131(15): 4940-4944. | 33 | HANIGAN M H, FRIERSON H F, BROWN J E, et al. Human ovarian tumors express γ-glutamyl transpeptidase[J]. Cancer Research, 1994, 54(1): 286-290. | 34 | HAI Z, Ni Y, SAIMIi D, et al. γ-Glutamyltranspeptidase-triggered intracellular gadolinium nanoparticle formation enhances the T2-weighted MR contrast of tumor[J]. Nano Letters, 2019, 19(4): 2428-2433. | 35 | YAO Q, HUANG Z, LIU D, et al. Enzyme-instructed supramolecular self-assembly with anticancer activity[J]. Advanced Materials, 2019, 31(45): 1-8. | 36 | ZHOU J, DU X, YAMAGATA N, et al. Enzyme-instructed self-assembly of small D-peptides as a multiple-step process for selectively killing cancer cells[J]. Journal of the American Chemical Society, 2016, 138(11): 3813-3823. | 37 | DU X, ZHOU J, WANG H, et al. In situ generated D-peptidic nanofibrils as multifaceted apoptotic inducers to target cancer cells[J]. Cell Death & Disease, 2017, 8(2): 1-11. | 38 | OBEROI H S, NUKOLAVA N V, KABANOV A V, et al. Nanocarriers for delivery of platinum anticancer drugs[J]. Advanced Drug Delivery Reviews, 2013, 65(13-14): 1667-1685. | 39 | GOTTESMAN M M. Mechanisms of cancer drug resistance[J]. Annual Review of Medicine, 2002, 53(1): 615-627. | 40 | CHEN Z, ZHANG P, CHEETHAM A G, et al. Controlled release of free doxorubicin from peptide-drug conjugates by drug loading[J]. Journal of Controlled Release, 2014, 191(17): 123-130. | 41 | DAL P A, NI M H, Esposito E, et al. Novel tumor-targeted RGD peptide-camptothecin conjugates: synthesis and biological evaluation[J]. Bioorganic & Medicinal Chemistry, 2010, 18(1): 64-72. | 42 | ZHANG D, QI G B, ZHAO Y X, et al. In situ formation of nanofibers from purpurin 18-peptide conjugates and the assembly induced retention effect in tumor sites[J]. Advanced Materials, 2015, 27(40): 6125-6130. | 43 | GAO Y, KUANG Y, GUO Z F, et al. Enzyme-instructed molecular self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative[J]. Journal of the American Chemical Society, 2009, 131(38): 13576-13577. | 44 | LIU H, LI Y, LYU Z, et al. Enzyme-triggered supramolecular self-assembly of platinum prodrug with enhanced tumor-selective accumulation and reduced systemic toxicity[J]. Journal of Materials Chemistry B, 2014, 2(47): 8303-8309. | 45 | YUAN Y, WANG L, DU W, et al. Intracellular self-assembly of taxol nanoparticles for overcoming multidrug resistance[J]. Angewandte Chemie: International Edition, 2015, 54(33): 9700-9704. | 46 | HUANG P, GAO Y, LIN J, et al. Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics[J]. ACS Nano, 2015, 9(10): 9517-9527. | 47 | CAI Y, SHEN H, ZHAN J, et al. Supramolecular “Trojan Horse” for nuclear delivery of dual anticancer drugs[J]. Journal of the American Chemical Society, 2017, 139(8): 2876-2879. | 48 | MILLER M A, AAKEVOLD B, MILULA H, et al. Nano-palladium is a cellular catalyst for in vivo chemistry[J]. Nature Communications, 2017, 8(1): 1-13. | 49 | YAO Q, LIN F, FAN X, et al. Synergistic enzymatic and bioorthogonal reactions for selective prodrug activation in living systems[J]. Nature Communications, 2018, 9(1): 1-9. |
|