[1] LI Q S,LI G Q,MA F Q,ZHANG Z M,et al. Highly efficient ring-opening polymerization of epsilon-caprolactone catalyzed by a recombinant Escherichia coli whole-cell biocatalyst[J]. Process Biochemistry,2011,46(2):477-481.
[2] JIANG Z Z. Lipase-catalyzed synthesis of aliphatic polyesters via copolymerization of lactone,dialkyl diester,and diol[J]. Biomacromolecules,2008,9(11):3246-3251.
[3] KOBAYASHI S. 5,10-Enzymatic polymerization[M]. Polymer Science:A Comprehensive Reference,2012:217-237.
[4] KATO M,TOSHIMA K,MATSUMURA S. Direct enzymatic synthesis of a polyester with free pendant mercapto groups[J]. Biomacromolecules,2009,10(2):366-373.
[5] JIANG Z Z,LIU C,GROSS R A. Lipase-catalyzed synthesis of aliphatic poly(carbonate-co-esters)[J]. Macromolecules,2008,41(13):4671-4680.
[6] LI Q S,LI G Q,YU S S,et al. Ring-opening polymerization of ε-caprolactone catalyzed by a novel thermophilic lipase from Fervidobacterium nodosum[J]. Process Biochemistry,2011,46(1):253-257.
[7] 王宇新. 非水相脂肪酶催化糖酯合成的研究[D]. 哈尔滨:哈尔滨商业大学,2015. WANG Y X. The study on lipase-catalyzed synthesis of sugar ester in non-aqueous medium[D]. Harbin:Harbin University of Commerce,2015
[8] 钱露,李庆龙,王晶. 国产脂肪酶在面条专用粉中的应用初探[J]. 现代面粉工业,2012(3):21-25. QIAN L,LI Q L,WANG J. Preliminary study on the application of domestic lipase in noodle flour[J]. Modern Flour Milling Industry,2012(3):21-25.
[9] MATHESH M,LUAN B,AKANBI T O,et al. Opening lids:modulation of lipase immobilization by graphene oxides[J]. ACS Catalysis,2016,6(7):4760-4768.
[10] ZHAO K,CAO X,DI Q,et al. Synthesis,characterization and optimization of a two-step immobilized lipase[J]. Renewable Energy,2017,103:383-387.
[11] REHMAN S,WANG P,BHATTI H N,et al. Improved catalytic properties of Penicillium notatum lipase immobilized in nanoscale silicone polymeric films[J]. International Journal of Biological Macromolecles,2017,97:279-286.
[12] 王建芝. 功能化磁性纳米材料的制备及其固定化酶的研究[D]. 兰州:兰州大学,2015. WANG J Z. Preparation of functionalized magnetic nanomateriald and their application for enzyme immobilization[D]. Lanzhou:Lanzhou University,2015.
[13] XIE W,ZANG X. Covalent immobilization of lipase onto aminopropyl-functionalized hydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles:a magnetic biocatalyst for interesterification of soybean oil[J].Food Chemistry,2017,227:397-403.
[14] WU R Z,AL-AZEMI T F,BISHT K S. Functionalized polycarbonate derived from tartaric acid:enzymatic ring-opening polymerization of a seven-membered cyclic carbonate[J]. Biomacromolecules,2008,9(10):2921-2928.
[15] GROSS R A,KUMAR A,KALRA B. Polymer synthesis by in vitro enzyme catalysis[J]. Chemistry Reviews,2001,101(7):2097-2124.
[16] BISHT K S,SVIRKIN Y Y,HENDERSON L A,et al. Lipase-catalyzed ring-opening polymerization of trimethylene carbonate[J]. Macromolecules,1997,30(25):7735-7742.
[17] YAMAMOTO Y,KAIHARA S,TOSHIMA K,et al. High-molecular-weight polycarbonates synthesized by enzymatic ROP of a cyclic carbonate as a green process[J]. Macromolecular Bioscience,2009,9(10):968-978.
[18] HE F,WANG Y P,FENG J,et al. Synthesis,characterization and ring-opening polymerization of a novel six-membered cyclic carbonate bearing pendent allyl ether group[J]. Polymer,2008,49(5):1185-1190.
[19] FENG J,WANG H F,ZHANG X Z,et al. Investigation on lipase-catalyzed solution polymerization of cyclic carbonate[J]. European Polymer Journal,2009,45(2):523-529.
[20] PYO S H,NUSZKIEWICZ K,PERSSON P,et al. Lipase-mediated synthesis of six-membered cyclic carbonates from trimethylolpropane and dialkyl carbonates:Influence of medium engineering on reaction selectivity[J]. Journal of Molecular Catalysis B:Enzymatic,2011,73(1-4):67-73.
[21] OGO?CZYK D,JANKOWSKI P,GARSTECHI P. Functionalization of polycarbonate with proteins; open-tubular enzymatic microreactors.[J]. Lab. On. A. Chip.,2012,12(5):2743-2748.
[22] KNANI D,GUTMAN A L,KOHN D H. Enzyme-catalyzed synthesis of linear polyesters[J]. Chinese & Foreign Corporation Culture,1993,31(5):1221-1232.
[23] FRAMPTON M B,SÉGUIN J P, MARQUARDT D,et al. Synthesis of polyesters containing disiloxane subunits:structural characterization,kinetics,and an examination of the thermal tolerance of Novozym-435[J]. Journal of Molecular Catalysis B:Enzymatic,2013,85/86(85):149-155.
[24] TANAKA A,KOHRI M,TAKIGUCHI T,et al. Enzymatic synthesis of reversibly crosslinkable polyesters with pendant mercapto groups[J]. Polymer Degradation & Stability,2012,97(8):1415-1422.
[25] DÜ?KÜNKORUR H Ö,BÉGUÉA A,POLLET E,et al. Enzymatic ring-opening (co) polymerization of lactide stereoisomerscatalyzed by lipases. toward the in situ synthesis of organic/inorganicnanohybrids[J]. Journalal of Molecular Catalysis B:Enzymatic,2015,115:20-28.
[26] TARESCO V,CREASEY R,KENNON J,et al. Variation in structure and properties of poly(glycerol adipate) via control of chain branching during enzymatic synthesis[J]. Polymer,2016,89:41-49.
[27] KAJIWARA S,YAMADA R,MORI H,et al. Development of sucrose-complexed lipase to improve its transesterification activity and atability in organic solvents[J]. Biochemical Engineering Journal,2017,121:83-87.
[28] LIU W H,CHEN B Q,WANG F,et al. Lipase-catalyzed synthesis of aliphatic polyesters and properties characterization[J]. Process Biochemistry,2011,46(10):1993-2000.
[29] LIU W H,WANG F,TAN T W,et al. Lipase-catalyzed synthesis and characterization of polymers by cyclodextrin as support architecture[J]. Carbohydrate Polymers,2013,92(1):633-640.
[30] MAZZOCCHETTI L,SCANDOLA M,JIANG Z. Copolymers of ethyl glycolate and ω-pentadecalactone:enzymatic synthesis and solid-state characterization[J]. European Polymer Journal,2011,47(5):942-948.
[31] KUMAR A,KALRA B,ALEX D A,et al. Efficient ring-opening polymerization and copolymerization of ε-caprolactone and ω-pentadecalactone catalyzed by Candida antartica lipase B[J]. Macromolecules,2000,33(17):6303-6309.
[32] DAI S,XUE L,ZINN M,et al. Enzyme-catalyzed polycondensation of polyester macrodiols with divinyl adipate:a green method for the preparation of thermoplastic block copolyesters[J]. Biomacromolecules,2009,10(12):3176-3181.
[33] LI G,YU D,ZONG H. Lipase-catalyzed synthesis of biodegradable copolymer containing malic acid units in solvent-free system[J]. European Polymer Journal,2008,44(4):1123-1129.
[34] YAO D,LI G,KUILA T,et al. Lipase-catalyzed synthesis and characterization of biodegradable polyester containing l-malic acid unit in solvent system[J]. Journal of Applied Polymer Science,2011,120(2):1114-1120.
[35] MARTINO L,SCANDOLA M,JIANG Z Z. Enzymatic synthesis,thermal and crystalline properties of a poly(β-amino ester) and poly(lactone-co-β-amino ester) copolymers[J]. Polymer,2012,53(9):1839-1848.
[36] JIANG Z Z,ZHANG J W. Lipase-catalyzed synthesis of aliphatic polyesters via copolymerization of lactide with diesters and diols[J]. Polymer,2013,54(22):6105-6113.
[37] DÜ?KÜNKORUR H Ö,POLLET E,PHALIP V,et al. Lipase catalyzed synthesis of polycaprolactone and clay-based nanohybrids[J]. Polymer,2014,55(7):1648-1655.
[38] NAMEKAWA S,UYAMA H,KOBAYASHI S. Lipase-catalyzed ring-opening polymerization of lactones in water[J]. Polymer Journal,1998,30(3):269-271.
[39] TADEN A,ANTONIETTI M,LANDFESTER K. Enzymatic polymerization towards biodegradable polyester nanoparticles[J]. Macromolecular Rapid Communications,2003,24(8):512-516.
[40] LI K,HE T,LI C,et al. Lipase-catalysed direct Mannich reaction in water:utilization of biocatalytic promiscuity for C-C bond formation in a "one-pot"synthesis[J]. Green Chemistry,2009,11(6):777-779.
[41] LI C,ZHOU Y J,WANG N,et al. Promiscuous protease-catalyzed aldol reactions:a facile biocatalytic protocol for carbon-carbon bond formation in aqueous media[J]. Journal of Biotechnology,2010,150(4):539-545.
[42] MALBERG S,FINNE-WISTRAND A,ALBERTSSON A C. The environmental influence in enzymatic polymerization of aliphatic polyesters in bulk and aqueous mini-emulsion[J]. Polymer,2010,51(23):5318-5322.
[43] THURECHT K J,HEISE A,DE GEUS M,et al. Kinetics of enzymatic ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide[J]. Macromolecules,2006,39(1):7967-7972.
[44] MATSUMURA S,EBATA H,KONDO R,et al. Organic solvent-free enzymatic transformation of poly(ε-caprolactone) into repolymerizable oligomers in supercritical carbon dioxide[J]. Macromolecular Rapid Communications,2001,22(16):1325-1329.
[45] KONDO R,TOSHIMA K,MATSUMURA S. Lipase-catalyzed selective transformation of polycaprolactone into cyclic dicaprolactone and its repolymerization in supercritical carbon dioxide[J]. Macromolecular Bioscience,2002,2(6):267-271.
[46] ZHOU J X,VILLARROYA S,et al. One-step chemo enzymatic synthesis of poly(ε-caprolactone block-methyl methacrylate) in supercritical CO2[J]. Macromolecules,2006,39(16):5352-5358.
[47] YUAN Y,BAI S,SUN Y. Comparison of lipase-catalyzed enantioselective esterification of (±)-menthol in ionicliquids and organic solvents[J]. Food Chem.,2006,97(2):324-330.
[48] BARRERA R K A,MARCOS F A,VERA G R,et al. Enzymatic ring-opening polymerization of ε-caprolactone by Yarrowia lipolyticalipase in ionic liquids[J]. Journal Polymer Science A:Polymer Chemistry,2009,47(21):5792-805.
[49] MARCILLA R,GEUS M D,MECERREYES D,et al. Enzymatic polyester synthesis in ionic liquids[J]. European Polymer Journal, 2006,42(6):1215-1221.
[50] GORKE J T,OKRASA K,LOUWAGIE A,et al. Enzymatic synthesis of poly(hydroxyalkanoates) in ionic liquids[J]. Journal Biotechnology,2007,132(3):306-313.
[51] MOHILE S S,POTDAR M K,HARJANI J R,et al. Ionic liquids:efficient additives for Candida rugosa lipase-catalyzed enantioselective hydrolysis of butyl 2-(4-chlorophenoxy) propionate[J]. J. Mol. Catal. B:Enzym.,2004,30(5/6):185-188.
[52] ERBELDINGER M,MESIANO A J,RUSSELL A J. Enzymatic catalysis of formation of Z-aspartame in ionic liquid-an alternative to enzymatic catalysis in organic solvents[J]. Biotechnol. Prog.,2000,16(6):1129-1131. |