1 | 陈晓东. 食品工程——化工精英应该关注的领域[J]. 化工进展, 2016, 35(6): 1852-1864. | 1 | CHEN Xiaodong. Food engineering——chemical engineering elite should pay attention to the field[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1852-1864. | 2 | BRULLS M, RASMUSON A. Heat transfer in vial lyophilization[J]. International Journal of Pharmaceutics, 2002, 246(1): 1-16. | 3 | RATTI C. Hot air and freeze-drying of high-value foods: a review[J]. Journal of Food Engineering, 2001, 49(4): 311-319. | 4 | NAIL S L, JIANG S, CHONGPRASERT S, et al. Fundamentals of freeze-drying[M] //NAIL S L, AKERS M J. Development and manufacture of protein pharmaceuticals. New York: Kluwer Academic / Plenum Publishers, 2002: 281-360. | 5 | WANG Wei, CHEN Guohua. Theoretical study on microwave freeze-drying of an aqueous pharmaceutical excipient with the aid of dielectric material[J]. Drying Technology, 2005, 23(9-11): 2147-2168. | 6 | LIAPIS A I, BRUTTINI R. Freeze drying[M] // MUJUMDAR A S. Handbook of industrial drying. New York: CRC Press, 2015: 259-282. | 7 | 涂伟萍, 程江, 杨卓如, 等. 食品冷冻干燥过程的模型及影响因素[J]. 化工学报, 1997, 48(2): 186-192. | 7 | TU Weiping, CHENG Jiang, YANG Zhuoru, et al. Model and influencing factors of food freeze-drying process[J]. Journal of Chemical Industry and Engineering (China), 1997, 48(2): 186-192. | 8 | WANG Wei, CHEN Guohua. Numerical investigation on dielectric material assisted microwave freeze-drying of aqueous mannitol solution[J]. Drying Technology, 2003, 21(6): 995-1017. | 9 | WANG Wei, CHEN Guohua. Heat and mass transfer model of dielectric-material-assisted microwave freeze-drying of skim milk with hygroscopic effect[J]. Chemical Engineering Science, 2005, 60(23): 6542-6550. | 10 | LI Z F, RAGHAVAN G S V, VALERIE O. Temperature and power control in microwave drying[J]. Journal of Food Engineering, 2010, 97(4): 478-483. | 11 | WANG Wei, CHEN Guohua, GAO Furong. Effect of dielectric material on microwave freeze drying of skim milk[J]. Drying Technology, 2005, 23(1/2): 317-340. | 12 | WANG Wei, CHEN Guohua. Freeze drying with dielectric-material-assisted microwave heating[J]. AIChE Journal, 2010, 53(12): 3077-3088. | 13 | KASPER J C, FRIESS W. The freezing step in lyophilization: physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals[J]. European Journal of Pharmaceutics & Biopharmaceutics, 2011, 78(2): 248-263. | 14 | PATAPOFF T W, OVERCASHIER D E. The importance of freezing on lyophilization cycle development[J]. BioPharm International, 2002, 15(3): 16-21. | 15 | 李俊奇, 李保国. 药品真空冷冻干燥过程监控技术研究进展[J]. 化工进展, 2015, 34(8): 3128-3132. | 15 | LI Junqi, LI Baoguo. Research progress in monitoring and control technology for pharmaceutical freeze-drying process[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3128-3132. | 16 | WANG Wei. Dielectric-material-assisted microwave freeze-drying of aqueous solution[D]. Hongkong: Hong Kong University of Science and Technology, 2005. | 17 | SEARLES J A, CARPENTER J F, RANDOLPH T W. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf[J]. Journal of Pharmaceutical Sciences, 2001, 90(7): 860-871. | 18 | WANG Wei, HU Dapeng, PAN Yanqiu, et al. Freeze-drying of aqueous solution frozen with prebuilt pores[J]. AIChE Journal, 2015, 61(6): 2048-2057. | 19 | WANG Wei, WANG Shihao, PAN Yanqiu, et al. Porous frozen material approach to freeze-drying of instant coffee[J]. Drying Technology, 2019, 37(16): 2126-2136. | 20 | BURKE M J, GUSTA L V, QUAMME H A, et al. Freezing and injury in plants[J]. Annual Review of Plant Physiology, 1976, 27(1): 507-528. | 21 | PIKAL M J. Freeze drying[M] // SWARBRICK J. Encyclopedia of pharmaceutical technology. New York: Informa Healthcare, 2007: 1807-1833. | 22 | GOSHIMA H, DO G, NAKAGAWA K. Impact of ice morphology on design space of pharmaceutical freeze-drying[J]. Journal of Pharmaceutical Sciences, 2016, 105(6): 1920-1933. | 23 | MILLMAN M J, LIAPIS A I M J, MARCHELLO J M. An analysis of lyophilization process using a sorption-sublimation model and various operational policies[J]. AIChE Journal, 1985, 31(10): 1594-1604. | 24 | PETROPOULOS J H, PETROU J K, LIAPIS A I. Network model investigation of gas transport in bidisperse porous adsorbents[J]. Industrial & Engineering Chemistry Research, 1991, 30(6): 1281-1289. | 25 | 李恒乐, 王维, 李强强. 具有预制孔隙多孔物料的冷冻干燥[J]. 化工学报, 2016, 67(7): 2857-2863. | 25 | LI Hengle, WANG Wei, LI Qiangqiang. Freeze-drying of porous frozen material with prefabricated porosity[J]. CIESC Journal, 2016, 67(7): 2857-2863. | 26 | INADA T, ZHANG X, YABE A, et al. Active control of phase change from supercooled water to ice by ultrasonic vibration 1. Control of freezing temperature[J]. International Journal of Heat & Mass Transfer, 2001, 44(23): 4523-4531. | 27 | NAKAGAWA K, HOTTOT A, VESSOT S, et al. Influence of controlled nucleation by ultrasounds on ice morphology of frozen formulations for pharmaceutical proteins freeze-drying[J]. Chemical Engineering & Processing Process Intensification, 2006, 45(9): 783-791. | 28 | HOTTOT A, NAKAGAWA K, ANDRIEU J. Effect of ultrasound-controlled nucleation on structural and morphological properties of freeze-dried mannitol solutions[J]. Chemical Engineering Research & Design, 2008, 86(2): 193-200. | 29 | SACLIER M, PECZALSKI R, ANDRIEU J, et al. Effect of ultrasonically induced nucleation on ice crystals’ size and shape during freezing in vials[J]. Chemical Engineering Science, 2010, 65(10): 3064-3071. | 30 | PASSOT S, TRELEA I C, MARIN M, et al. Effect of controlled ice nucleation on primary drying stage and protein recovery in vials cooled in a modified freeze-dryer[J]. Journal of Biomechanical Engineering, 2009, 131(7): 111-115. | 31 | RAMBHATLA S, RAMOT R, BHUGRA C, et al. Heat and mass transfer scale-up issues during freeze drying: II Control and characterization of the degree of supercooling[J]. Aaps Pharmscitech, 2004, 5(4): 54-62. | 32 | PATEL S M, BHUGRA C, PIKAL M J. Reduced pressure ice fog technique for controlled ice nucleation during freeze-drying[J]. Aaps Pharmscitech, 2009, 10(4): 1406-1411. | 33 | 徐庆, 耿县如, 李占勇. 喷雾冷冻干燥对颗粒产品形态的影响[J]. 化工进展, 2013, 32(2): 270-275. | 33 | XU Qing, GENG Xianru, LI Zhanyong. Morphology of particle produced by spray-freeze drying[J]. Chemical Industry and Engineering Progress, 2013, 32(2): 270-275. | 34 | SANZ P D, OTERO L, ELVIRA C D E, et al. Freezing processes in high-pressure domains[J]. International Journal of Refrigeration, 1997, 20(5): 301-307. | 35 | FERNANDEZ P P, OTERO L, GUIGNON B, et al. High-pressure shift freezing versus high-pressure assisted freezing: effects on the microstructure of a food model[J]. Food Hydrocolloids, 2006, 20(4): 510-522. | 36 | KRAMER M, SENNHENN B, LEE G. Freeze-drying using vacuum-induced surface freezing[J]. Journal of Pharmaceutical Sciences, 2002, 91(2): 433-443. | 37 | ODDONE I, PISANO R, ROBERT B, et al. Vacuum-induced nucleation as a method for freeze-drying cycle optimization[J]. Industrial & Engineering Chemistry Research, 2014, 53(47): 18236-18244. | 38 | ODDONE I, BARRESI A A, PISANO R. Influence of controlled ice nucleation on the freeze-drying of pharmaceutical products: the secondary drying step[J]. International Journal of Pharmaceutics, 2017, 524(1/2): 134-140. | 39 | ARSICCIO A, BARRESI A A, PISANO R. Prediction of ice crystal size distribution after freezing of pharmaceutical solutions[J]. Crystal Growth & Design, 2017, 17(9): 4573-4581. | 40 | SEARLES J, CARPENTER J, RANDOLPH T. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine Tg' in pharmaceutical lyophilization[J]. Journal of Pharmaceutical Sciences, 2010, 90(7): 872-887. | 41 | SUTTON R L, LIPS A, PICCIRILLO G, et al. Kinetics of ice recrystallization in aqueous fructose solutions[J]. Journal of Food Science, 2010, 61(4): 741-745. | 42 | HAGIWARA T, HARTEL R W. Effect of sweetener, stabilizer, and storage temperature on ice recrystallization in ice cream[J]. Journal of Dairy Science, 1996, 79(5): 735-744. | 43 | TEAGARDEN D L, BAKER D S. Practical aspects of lyophilization using non-aqueous co-solvent systems[J]. European Journal of Pharmaceutical Sciences, 2002, 15(2): 115-133. | 44 | 左建国, 华泽钊, 郑效东. 有机溶剂的冷冻干燥研究[J]. 食品工业科技, 2006, 27(5): 203-205. | 44 | ZUO Jianguo, HUA Zezhao, ZHENG Xiaodong. Freeze-drying of organic solvents[J]. Science and Technology of Food Industry, 2006, 27(5): 203-205. | 45 | 杜松, 左建国, 邓英杰. 叔丁醇-水共溶剂冷冻干燥工艺及其在药剂学中的应用[J]. 中国药剂学杂志, 2006, 4(3): 116-121. | 45 | DU Song, ZUO Jianguo, DENG Yingjie. Freeze-drying process and pharmaceutical application of tertiary butyl alcohol-water system[J]. Chinese Journal of Pharmaceutics, 2006, 4(3): 116-121. | 46 | KASRAIAN K, DELUCA P P. Thermal analysis of the tertiary butyl alcohol-water system and its implications on freeze-drying[J]. Pharmaceutical Research, 1995, 12(4): 484-490. | 47 | WITTAYA-AREEKUL S, NAIL S L. Freeze-drying of tert-butyl alcohol/water cosolvent systems: effects of formulation and process variables on residual solvents[J]. Journal of Pharmaceutical Sciences, 1998, 87(4): 491-495. | 48 | 牛利娇, 王维, 潘思麒, 等. 具有预制孔隙多孔介质冷冻干燥的多相传递模型[J]. 化工学报, 2017, 68(5): 1833-1844. | 48 | NIU Lijiao, WANG Wei, PAN Siqi, et al. Multiphase transport model for freeze-drying of porous media with prefabricated porosity[J]. CIESC Journal, 2017, 68(5): 1833-1844. | 49 | 杨菁, 王维, 张朔, 等. 吸波材料辅助的初始非饱和多孔物料微波冷冻干燥理论与实验[J]. 化工学报, 2019, 70(9): 3307-3319. | 49 | YANG Jing, WANG Wei, ZHANG Shuo, et al. Multiphysics conjugated model for freeze-drying of liquid solution assisted by wave-absorbing material[J]. CIESC Journal, 2019, 70(9): 3307-3319. | 50 | NAIL S, GATLIN L. Freeze drying: principle and practice[M] // AVIS A, LIEBERMANN A, LACHMANN L. Pharmaceutical dosage forms. New York: Marcel Dekker, 1993: 163-333. | 51 | PIKAL M J, ROY M L, SHAH S. Mass and heat transfer in vial freeze-drying of pharmaceuticals: role of the vial[J]. Journal of Pharmaceutical Sciences, 2010, 73(9): 1224-1237. | 52 | WANG Wei, HU Dapeng, PAN Yanqiu, et al. Numerical investigation on freeze-drying of aqueous material frozen with pre-built pores[J]. Chinese Journal Chemical Engineering, 2016, 24(1): 116-125. | 53 | WANG Wei, HU Dapeng, PAN Yanqiu, et al. Multiphase transport modeling for freeze-drying of aqueous material frozen with prebuilt porosity[J]. International Journal of Heat and Mass Transfer, 2018, 122(2): 1353-1365. | 54 | LOUIS R. Glimpses into the realm of freeze-drying: classical issues and new ventures[M] // LOUIS R, JOAN C M. Freeze Drying / Lyophilization of pharmaceutical and biological products. 3rd ed. New York: Informa Healthcare, 2010: 1-28. | 55 | 于凯, 王维, 潘艳秋, 等. 初始非饱和多孔物料对冷冻干燥过程的影响[J]. 化工学报, 2013, 64(9): 3110-3116. | 55 | YU Kai, WANG Wei, PAN Yanqiu, et al. Effect of initially unsaturated porous frozen material on freeze-drying[J]. CIESC Journal, 2013, 64(9): 3110-3116. | 56 | 赵延强, 王维, 潘艳秋, 等. 具有初始孔隙的多孔物料冷冻干燥[J]. 化工学报, 2015, 66(2): 504-511. | 56 | ZHAO Yanqiang, WANG Wei, PAN Yanqiu, et al. Freeze-drying of porous frozen material with initial porosity[J]. CIESC Journal, 2015, 66(2): 504-511. | 57 | 王维, 李强强, 陈国华, 等. 具有初始孔隙的速溶咖啡冷冻干燥实验[J]. 农业机械学报, 2018, 49(6): 347-353. | 57 | WANG Wei, LI Qiangqiang, CHEN Guohua, et al. Experiment on freeze-drying of instant coffee with initial porosity[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 347-353. | 58 | 张朔, 王维, 李强强, 等. 具有预制孔隙的维生素C水溶液微波冷冻干燥[J]. 化工学报, 2019, 70(6): 2129-2138. | 58 | ZHANG Shuo, WANG Wei, LI Qiangqiang, et al. Microwave freeze-drying of vitamin C solution frozen with preformed pores[J]. CIESC Journal, 2019, 70(6): 2129-2138. |
|