1 | NAZIR H, BATOOL M, BOLIVAR O, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. | 2 | 蔺瑞山, 田斌守, 邵继新, 等. 相变储热在太阳能采暖中的应用研究[J]. 节能技术, 2018, 36(5): 447-452. | 2 | LIN R S, TIAN B S, SHAO J X, et al. Application research on PCM thermal storage in solar heating[J]. Energy Conservation Technology, 2018, 36(5): 447-452. | 3 | 鲁进利, 李洋, 韩亚芳, 等. 含相变材料的定型复合建材储能调温及力学特性[J]. 化工进展, 2019, 38(8): 3801-3808. | 3 | LU J L, LI Y, HAN Y F, et al. Energy storage and mechanical properties of shaped composite building materials containing phase change materials[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3801-3808. | 4 | 胡小冬, 高学农, 李得伦, 等. 石蜡/膨胀石墨定形相变材料的性能[J]. 化工学报, 2013, 64(10): 3831-3837. | 4 | HU X D, GAO X N, LI D L, et al. Performance of paraffin/expanded graphite composite phase change materials[J]. CIESC Journal, 2013, 64(10): 3831-3837. | 5 | SU J, WANG X, WANG S, et al. Fabrication and properties of microencapsulated-paraffin/gypsum-matrix building materials for thermal energy storage[J]. Energy Conversion and Management, 2012, 55: 101-107. | 6 | JEBASINGH B E. Preparation of organic based ternary eutectic fatty acid mixture as phase change material (PCM), optimizing their thermal properties by enriched solar treated exfoliated graphite for energy storage[J]. Materials Today Proceedings, 2016, 3(6): 1592-1598. | 7 | 苑坤杰, 张正国, 方晓明, 等. 水合无机盐及其复合相变储热材料的研究进展[J]. 化工进展, 2016, 35(6): 1820-1826. | 7 | YUAN K J, ZHANG Z G, FANG X M, et al. Research progress of inorganic hydrated salts and their phase change heat storage composites[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1820-1826. | 8 | 庄正宁, 曹念, 李江荣. NaOH/KOH二元体系蓄热性能的研究[J]. 西安交通大学学报, 2002(11): 1133-1137. | 8 | ZHUANG Z N, CAO N, LI J R. Experimental study on energy savings of NaOH/KOH binary system[J]. Journal of Xi'an Jiaotong University, 2002(11): 1133-1137. | 9 | 路阳, 彭国伟, 王智平, 等. 熔融盐相变储热材料的研究现状及发展趋势[J]. 材料导报, 2011, 25(21): 38-42. | 9 | LU Y, PENG G W, WANG Z P, et al. A review on research for molten salt as a phase change material[J]. Material Report, 2011, 25(21): 38-42. | 10 | KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 955-970. | 11 | LIU H, WANG X, WU D. Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: a review[J]. Sustainable Energy Fuels, 2019, 5:1091-1149. | 12 | GENG X, LI W, WANG Y, et al. Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing[J]. Applied Energy, 2018, 217: 281-294. | 13 | KONUKLU Y, OSTRY M, PAKSOY H O, et al. Review on using microencapsulated phase change materials (PCM) in building applications[J]. Energy and Buildings, 2015, 106: 134-155. | 14 | ALEHOSSEINI E, JAFARI S M. Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry[J]. Trends in Food Science & Technology, 2019, 91: 116-128. | 15 | WEI G, WANG G, XU C, et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 81: 1771-1786. | 16 | XU T, LI Y, CHEN J, et al. Preparation and thermal energy storage properties of LiNO3-KCl-NaNO3/expanded graphite composite phase change material[J]. Solar Energy Materials and Solar Cells, 2017, 169: 215-221. | 17 | TAUSEEF-UR-REHMAN, ALI H M, JANJUA M M, et al. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams[J]. International Journal of Heat and Mass Transfer, 2019,135: 649-673. | 18 | LIU J, XIE M, LING Z, et al. Novel MgCl2-KCl/expanded graphite/graphite paper composite phase change blocks with high thermal conductivity and large latent heat[J]. Solar Energy, 2018, 159: 226-233. | 19 | XIAO J, JIN H, ZHU P, et al. Preparation, characterization and thermal properties of binary nitrate salts/expanded graphite as composite phase change material[J]. Thermochimica Acta, 2014, 587(9): 52-58. | 20 | 李爱菊, 王毅. 无机盐/陶瓷基复合蓄热材料高温稳定性的研究[J]. 材料导报, 2011, 25(12): 78-81. | 20 | LI A J, WANG Y. Study on the high temperature stability of salt/ceramic composite heat storage material[J]. Materials Review, 2011, 25(12): 78-81. | 21 | DENG Y, LI J, QIAN T, et al. Preparation and characterization of KNO3/diatomite shape-stabilized composite phase change material for high temperature thermal energy storage[J]. Journal of Materials Science & Technology, 2017, 33(2): 198-203. | 22 | 张仁元. 相变材料与相变储能技术[M]. 北京: 科学出版社, 2009: 135. | 22 | ZHANG R Y. Phase change material and phase change energy storage technology[M]. Beijing: Science Press, 2009: 135. | 23 | 许骏, 于思荣. 铝基合金相变储热材料的研究现状与发展趋势[J]. 材料导报, 2013, 27(19): 93-97. | 23 | XU J, YU S R. Research and application progress of Al-based alloy phase change materials using for thermal storage[J]. Materials Review, 2013, 27(19): 93-97. | 24 | LIU C, RAO Z, ZHAO J, et al. Review on nanoencapsulated phase change materials: preparation, characterization and heat transfer enhancement[J]. Nano Energy, 2015, 13: 814-826. | 25 | MARUOKA N, AKIYAMA T. Thermal stress analysis of PCM encapsulation for heat recovery of high temperature waste heat[J]. Journal of Chemical Engineering of Japan, 2003, 36(7): 794-798. | 26 | ZHANG G, LI J, CHEN Y, et al. Encapsulation of copper-based phase change materials for high temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2014, 128: 131-137. | 27 | WANG N, ZHANG L, ZHENG Y P, et al. Shell phase selection and layer numbers of core-shell structure in monotectic alloys with stable miscibility gap[J]. Journal of Alloys and Compounds, 2012, 538: 224-229. | 28 | 马炳倩. Cu基难混溶合金核壳结构的形成机理[D]. 北京:中国地质大学(北京), 2014. | 28 | MA B Q. Formation mechanism of core-shell structured immiscible alloys[D]. Beijing: China University of Geosciences(Beijing), 2014. | 29 | 张俊芳. Al-Bi-Sn-(Cu)难混溶合金的液相分离与核壳组织[D]. 上海:上海交通大学, 2013. | 29 | ZHANG J F. Liquid phase separation and core-shell structure of Al-Bi-Sn-(Cu) immiscible alloys[D]. Shanghai: Shanghai Jiao Tong University, 2013. | 30 | MA B, LI J, XU Z, et al. Fe-shell/Cu-core encapsulated metallic phase change materials prepared by aerodynamic levitation method[J]. Applied Energy, 2014, 132: 568-574. | 31 | MATHUR A, KASETTY R, OXLEY J, et al. Using encapsulated phase change salts for concentrated solar power plant[J]. Energy Procedia, 2014, 49: 908-915. | 32 | ALAM T E, DHAU J S, GOSWAMI D Y, et al. Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems[J]. Applied Energy, 2015, 154: 92-101. | 33 | GIMENEZ-GAVARRELL P, FERERES S. Glass encapsulated phase change materials for high temperature thermal energy storage[J]. Renewable Energy, 2017, 107: 497-507. | 34 | HE F, WANG X, WU D. New approach for sol-gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor[J]. Energy, 2014, 67: 223-233. | 35 | LAI C, LIN S M, CHU Y D, et al. Tunable endothermic plateau for enhancing thermal energy storage obtained using binary metal alloy particles[J]. Nano Energy, 2016, 25: 218-224. | 36 | 杨振忠, 王倩, 张行. 金属及合金相变储能微胶囊及其制备方法: CN106916573A[P]. 2017-07-04. | 36 | YANG Z Z, WANG Q, ZHANG X. Metal and alloy phase change energy storage microcapsules and preparation methods: CN106916573A[P]. 2017-07-04. | 37 | ZHANG H, BALRAM A, TIZNOBAIK H, et al. Microencapsulation of molten salt in stable silica shell via a water-limited sol-gel process for high temperature thermal energy storage[J]. Applied Thermal Engineering, 2018, 136: 268-274. | 38 | ZHANG H, SHIN D, SANTHANAGOPALAN S. Microencapsulated binary carbonate salt mixture in silica shell with enhanced effective heat capacity for high temperature latent heat storage[J]. Renewable Energy, 2019,134:1156-1162. | 39 | NOMURA T, YOOLERD J, SHENG N, et al. Microencapsulation of eutectic and hyper-eutectic Al-Si alloy as phase change materials for high-temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 187: 255-262. | 40 | 石宇恒. 高性能铝硅合金@Al2O3相变胶囊与高温陶瓷复合技术研究[D]. 武汉: 武汉科技大学, 2018. | 40 | SHI Y H. Study on the composite technology of high-performance Al-Si@Al2O3 phase change capsule and ceramic for high temperature application[D]. Wuhan: Wuhan University of Science and Technology, 2018. | 41 | FEI H, SONG G, HE X, et al. Structural and phase change characteristics of inorganic microencapsulated core/shell Al-Si/Al2O3 micro-particles during thermal cycling[J]. Ceramics International, 2015, 41(9): 10689-10696. | 42 | SHENG N, ZHU C, SAKAI H, et al. Synthesis of Al-25wt% Si@Al2O3@Cu microcapsules as phase change materials for high temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 191: 141-147. | 43 | SHENG N, ZHU C, SAITO G, et al. Development of a microencapsulated Al-Si phase change material with high-temperature thermal stability and durability over 3000 cycles[J]. Journal of Materials Chemistry A, 2018, 6: 10-1039. | 44 | NOMURA T, SHENG N, ZHU C, et al. Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation[J]. Applied Energy, 2017, 188: 9-18. | 45 | HONG Y, DING S, WU W, et al. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer[J]. ACS Applied Materials & Interfaces, 2010, 2(6): 1685-1691. | 46 | CINGARAPU S, SINGH D, TIMOFEEVA E V, et al. Nanofluids with encapsulated tin nanoparticles for advanced heat transfer and thermal energy storage[J]. International Journal of Energy Research, 2014, 38(1): 51-59. | 47 | ZHANG X X, FAN Y F, TAO X M, et al. Crystallization and prevention of supercooling of microencapsulated n-alkanes[J]. J.Colloid Interface Sci., 2005, 281(2): 299-306. | 48 | HSU T, CHUNG C, CHUNG F, et al. Thermal hysteresis in phase-change materials: encapsulated metal alloy core-shell microparticles[J]. Nano Energy, 2018, 51: 563-570. | 49 | HONG Y, WU W, HU J, et al. Controlling supercooling of encapsulated phase change nanoparticles for enhanced heat transfer[J]. Chemical Physics Letters, 2011, 504(4/6): 180-184. | 50 | ZOU D, MA X, LIU X, et al. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery[J]. International Journal of Heat and Mass Transfer, 2018, 120: 33-41. | 51 | ZOU D, LIU X, HE R, et al. High thermal response rate and super low supercooling degree microencapsulated phase change materials (MEPCM) developed by optimizing shell with various nanoparticles[J]. International Journal of Heat and Mass Transfer, 2019, 140: 956-964. | 52 | LAI C, CHANG W, HU W, et al. A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiOx core-shell nanoparticles[J]. Nanoscale, 2014,6(9): 4555. | 53 | FIRTH A, ZHANG B, YANG A. Quantification of global waste heat and its environmental effects[J]. Applied Energy, 2019, 235: 1314-1334. | 54 | MARUOKA N, AKIYAMA T. Exergy recovery from steelmaking off-gas by latent heat storage for methanol production[J]. Energy, 2006, 31(10/11): 1632-1642. | 55 | 张国才, 徐哲, 陈运法, 等. 金属基相变材料的研究进展及应用[J]. 储能科学与技术, 2012, 1(1): 74-81. | 55 | ZHANG G C, XU Z, CHEN Y F, et al. Progress in metal-based phase change materials for thermal energy storage applications[J]. Energy Storage Science and Technology, 2012, 1(1): 74-81. | 56 | MA L, HONG Y, MA Z, et al. Multiplexed highly sensitive detections of cancer biomarkers in thermal space using encapsulated phase change nanoparticles[J]. Applied Physics Letters, 2009, 95(4): 043701-043703. |
|