1 | 方项林, 邵志恒. 有色金属冶炼烟气制酸湿法净化工艺研究[J]. 世界有色金属, 2015(9): 79-80. | 1 | FANG X L,SHAO Z H. Research on the process of acid wet purification of the flue gas of nonferrous metals smelting[J].World Nonferrous Metal, 2015(9): 79-80. | 2 | STOLLE R, KOESER H, GUTBERLET H, et al. Oxidation and reduction of mercury by SCR deNOx catalysts under flue gas conditions in coal fired power plants[J]. Applied Catalysis B: Environmental, 2014, 144(144): 486-497. | 3 | 范宗良, 贠宏飞, 李贵贤, 等. 烟气同时脱硫脱硝工艺研究进展[J]. 当代化工, 2014, 43(10): 2057-2060. | 3 | FAN Z L, YUN H F, LI G X, et al. Research progress in simultaneous desulfurization and denitrification technologies for flue gas[J]. Contemporary Chemical Industry, 2014, 43(10): 2057-2060. | 4 | 胡敏. 催化裂化烟气排放控制技术现状及面临问题的分析[J]. 中外能源, 2012, 17(5): 77-83. | 4 | HU M. Current status and analysis of problems in catalytic cracking flue gas emission control technology[J]. Sino-Global Energy, 2012, 17(5): 77-83. | 5 | 张虎, 佟会玲, 陈昌和. 燃煤烟气同时脱硫脱硝机理概述[J]. 环境科学与技术, 2006, 29(7): 103-105. | 5 | ZHANG H, TONG H L, CHEN C H. Mechanism of simultaneous desulfurization and denitrition for flue gas[J]. Environmental Science and Technology, 2006, 29(7): 103-105. | 6 | LIU Q, LIU Z, HUANG Z, et al. A honeycomb catalyst for simultaneous NO and SO2 removal from flue gas: preparation and evaluation[J]. Catalysis Today, 2004, 93(1): 833-837. | 7 | DONG W, FENG C, ZHANG L, et al. Pd@UiO-66: an efficient catalyst for Suzuki-Miyaura coupling reaction at mild condition[J]. Catalysis Letters, 2016, 146(1): 117-125. | 8 | ZHANG W, LU G, CUI C, et al. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles[J]. Advanced Materials, 2014, 26(24): 4056-4060. | 9 | REN J, LANGMI H W, NORTH B C, et al. Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications[J]. International Journal of Hydrogen Energy, 2014, 39(2): 890-895. | 10 | SRINIVAS G, KRUNGLEVICIUTE V, GUO Z X, et al. Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume[J]. Energy & Environmental Science, 2013, 7(1): 335-342. | 11 | WU H, CHUA Y S, KRUNGLEVICIUTE V, et al. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption[J]. Journal of the American Chemical Society, 2013, 135(28): 10525-10532. | 12 | 李立博, 王勇, 王小青,等. 柔性金属有机骨架材料(MOFs)用于气体吸附分离[J]. 化工进展, 2016, 35(6): 1794-1803. | 12 | LI L B, WANG Y, WANG X Q, et al.Selective gas adsorption and separation in flexible metal-organic frameworks[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1794-1803. | 13 | HORCAJADA P, GREF R, BAATI T, et al. Metal-organic frameworks in biomedicine[J]. Chemical Reviews, 2012, 112(2): 1232-1268. | 14 | 李莹, 张红星, 闫柯乐,等. 基于MOFs材料的化学传感器的研究进展[J]. 化工进展, 2017, 36(4): 1316-1323. | 14 | LI Y, ZHANG H X, YAN K L, et al. Progress of chemical sensors based on metal-organic frameworks (MOFs)[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1316-1323. | 15 | ELISA B, CARMEN M, NAVARRO J A R. Toxic gas removal-metal-organic frameworks for the capture and degradation of toxic gases and vapours[J]. Chemical Society Reviews, 2015, 45(43): 5419-5430. | 16 | HASAN Z, JHUNG S H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions[J]. Journal of Hazardous Materials, 2015, 283:329-339. | 17 | WANG C C, LI J R, LV X L, et al. Photocatalytic organic pollutants degradation in metal-organic frameworks[J]. Energy & Environmental Science, 2014, 7(9): 2831-2867. | 18 | WANG P, SUN H, QUAN X, et al. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOxwith NH3 at low temperature[J]. Journal of Hazardous Materials, 2016, 301(1): 512-521. | 19 | SCHLICHTE K, KRATZKE T, KASKEL S. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2[J]. Microporous and Mesoporous Materials, 2004, 73(1): 81-88. | 20 | SUN B, KAYAL S, CHAKRABORTY A. Study of HKUST (copper benzene-1,3,5-tricarboxylate, Cu-BTC MOF)-1 metal organic frameworks for CH4 adsorption: an experimental investigation with GCMC (Grand Canonical Monte-carlo) simulation[J]. Energy, 2014, 76:419-427. | 21 | DATHE H, PERINGER E, ROBERTS V, et al. Metal organic frameworks based on Cu2+ and benzene-1,3,5-tricarboxylate as host for SO2 trapping agents[J]. Comptes Rendus-Chimie, 2005, 8(3): 753-763. | 22 | LI C, SHI Y, ZHANG H, et al. Cu-BTC metal-organic framework as a novel catalyst for low temperature selective catalytic reduction (SCR) of NO by NH3: promotional effect of activation temperature[J]. Integrated Ferroelectrics, 2016, 172(1): 169-179. | 23 | LI C Y, SHI Y, ZHANG H, et al. Investigation of Cu species in CuBTC: active sites for selective catalytic reduction of NO with NH3[J]. Advanced Materials Research, 2015, 1118:133-141. | 24 | LIU C, LI F, WU J, et al. A comparative study of MOx (M=Mn, Co and Cu) modifications over CePO4 catalysts for selective catalytic reduction of NO with NH3[J]. Journal of Hazardous Materials, 2019, 363:439-446. | 25 | XU W, ZHANG G, CHEN H, et al. Mn/beta and Mn/ZSM-5 for the low-temperature selective catalytic reduction of NO with ammonia: effect of manganese precursors[J]. Chinese Journal of Catalysis, 2018, 39(1): 118-127. | 26 | FAN Z, SHI J W, GAO C, et al. Gd-modified MnOx for the selective catalytic reduction of NO by NH3: the promoting effect of Gd on the catalytic performance and sulfur resistance[J]. Chemical Engineering Journal, 2018, 348:820-830. | 27 | GAO L, LI C, LI S, et al. Superior performance and resistance to SO2 and H2O over CoOx-modified MnOx/biomass activated carbons for simultaneous Hg0 and NO removal[J]. Chemical Engineering Journal, 2019, 371:781-795. | 28 | ZHANG L, SHI L, HUANG L, et al. Rational design of high-performance deNOx catalysts based on MnxCo3-xO4 nanocages derived from metal-organic frameworks[J]. ACS Catalysis, 2014, 4(6): 1753-1763. | 29 | YANG S, GUO Y, YAN N, et al. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe2O3 at lower temperatures[J]. Journal of Hazardous Materials, 2011, 186(1): 508-515. |
|