1 | üRGE-VORSATZ D, EYRE N, GRAHAM P, et al. Global energy assessment. Chapter10. Energy end-use: buildings[M]. Cambridge: Cambridge University Press, 2012: 649-760. | 2 | PITARMA R, MARQUES G, FERREIRA B R. Monitoring indoor air quality for enhanced occupational health[J]. Journal of Medical Systems, 2017, 41(2): 23. | 3 | 朱冬生, 徐婷, 蒋翔, 等. 太阳能集热器研究进展[J]. 电源技术, 2012, 36(10): 1582-1584. | 3 | ZHU D S, XU T, JIANG X, et al. Research progress of solar collectors[J]. Chinese Journal of Power Sources, 2012, 36(10): 1582-1584. | 4 | 朱丽, 陈萨如拉, 杨洋, 等. 太阳能光伏电池冷却散热技术研究进展[J]. 化工进展, 2017, 36(1): 10-19. | 4 | ZHU L, CHEN S R L, YANG Y, et al. Research progress on heat dissipation technology of photovoltaic cells[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 10-19. | 5 | 杨俊斌, 耿世彬. 太阳能空调的技术现状与发展[J]. 洁净与空调技术, 2017(1): 95-99. | 5 | YANG J B, GENG S B. Present situation and the development of solar air conditioning technology[J]. Contamination Control & Air-conditioning Technology, 2017(1): 95-99. | 6 | 徐伟, 刘志坚. 中国地源热泵技术发展与展望[J]. 建筑科学, 2013, 29(10): 26-33. | 6 | XU W, LIU Z J. Development and prospect of ground source heat pump technology in China[J]. Building Science, 2013, 29(10): 26-33. | 7 | 王元, 刘晓光, 杨俊杰, 等. 相变储能技术的研究进展与应用[J]. 煤气与热力, 2010, 30(9): 10-12. | 7 | WANG Y, LIU X G, YANG J J, et al. Research and application of phase-change energy storage technologie[J]. Gas & Heat, 2010, 30(9): 10-12. | 8 | 崔艳琦. 相变材料热性能及其在室内被动式储能系统的简易计算[J]. 储能科学与技术, 2017, 6(2): 302-306. | 8 | CUI Y Q. Thermal properties of phase change materials (PCM) and their concise calculations for passive storage applications in buildings[J]. Energy Storage Science and Technology, 2017, 6(2): 302-306. | 9 | MILIAN Y E, GUTIERREZ A, GRAGEDA M, et al. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties[J]. Renewable & Sustainable Energy Reviews, 2017, 73: 983-999. | 10 | 王婷玉. 水合盐微胶囊相变储能材料的制备及其热物性研究[D]. 广州: 广东工业大学, 2013. | 10 | WANG T Y. Synthesis, characterization and thermal analysis of hydrated salt micro-encapsulated phase-change materials[D]. Guangzhou: Guangdong University of Technology, 2013. | 11 | TYAGI V V, BUDDHI D. PCM thermal storage in buildings: a state of art[J]. Renewable & Sustainable Energy Reviews, 2007, 11(6): 1146-1166. | 12 | AKEIBER H, NEJAT P, MAJID M Z ABD, et al. A review on phase change material (PCM) for sustainable passive cooling in building envelopes[J]. Renewable & Sustainable Energy Reviews, 2016, 60: 1470-1497. | 13 | 葛治微, 李本侠, 王艳芬, 等. 有机/无机复合定形相变材料的制备及应用研究进展[J]. 化工新型材料, 2013, 41(12): 165-167. | 13 | GE Z W, LI B X, WANG Y F, et al. Research progress on preparation and application of the inorganic/organic phase change materials[J]. New Chemical Materials, 2013, 41(12): 165-167. | 14 | 赵思勰, 晏华, 汪宏涛, 等. 月桂酸/膨胀珍珠岩复合相变材料的制备与热性能研究[J]. 材料导报, 2017, 31(10): 107-111. | 14 | ZHAO S X, YAN H, WANG H T, et al. Preparation of lauric acid/expanded perlite composite phase material and its thermal performance[J]. Materials Review, 2017, 31(10): 107-111. | 15 | 张正国, 王学泽, 方晓明. 石蜡/膨胀石墨复合相变材料的结构与热性能[J]. 华南理工大学学报(自然科学版), 2006, 34(3): 1-5. | 15 | ZHANG Z G, WANG X Z, FANG X M. Structure and thermal properties of composite paraffin/expanded graphite phase-change material[J]. Jounal of South China University of Technology (Natural Science Edition), 2006, 34(3): 1-5. | 16 | FU L L, LING Z Y, FANG X M, et al. Thermal performance of CaCl2·6H2O/expanded perlite composite phase change boards embedded in aluminous gusset plates for building energy conservation[J]. Energy and Buildings, 2017, 155: 484-491. | 17 | YE R D, ZHANG C, SUN W C, et al. Novel wall panels containing CaCl2·6H2O-Mg(NO3)2·6H2O/expanded graphite composites with different phase change temperatures for building energy savings[J]. Energy and Buildings, 2018, 176: 407-417. | 18 | FU L L, WANG Q H, YE R D, et al. A calcium chloride hexahydrate/expanded perlite composite with good heat storage and insulation properties for building energy conservation[J]. Renewable Energy, 2017, 114: 733-743. | 19 | SAN A. Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials[J]. Energy Conversion and Management, 2016, 117: 132-141. | 20 | SONG M J, NIU F X, MAO N, et al. Review on building energy performance improvement using phase change materials[J]. Energy and Buildings, 2018, 158: 776-793. | 21 | HADJIEVA M, STOYKOV R, FILIPOVA T. Composite salt-hydrate concrete system for building energy storage[J]. Renewable Energy, 2000, 19(1/2): 111-115. | 22 | HALFORD C K, BOEHM R F. Modeling of phase change material peak load shifting[J]. Energy and Buildings, 2007, 39(3): 298-305. | 23 | 史巍, 程素香. 石蜡石墨粉复合相变材料在温室大棚中的控温效果研究[J]. 硅酸盐通报, 2017, 36(12): 4112-4116. | 23 | SHI W, CHENG S X. Temperature control effect of paraffin graphite composite phase change materials in greenhouse[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(12): 4112-4116. | 24 | 谢尚群, 孔祥飞, 何金棋, 等. 复合相变蓄能屋顶的制备及性能研究[J]. 墙材革新与建筑节能, 2017(7): 47-52. | 24 | XIE S Q, KONG X F, HE J Q, et al. Study on preparation and performance of composite phase change energy storage roof[J]. Wall Materials Innovation & Energy Saving in Buildings, 2017(7): 47-52. | 25 | 闫全英, 王立娟, 于丹, 等. 用于墙体和地板的相变材料性能[J]. 建筑材料学报, 2015, 18(2): 302-306. | 25 | YAN Q Y, WANG L J, YU D, et al. Thermal performance of phase change materials used in wall and floor[J]. Journal of Building Materials, 2015, 18(2): 302-306. | 26 | 嵇文秀. 三层相变玻璃窗对夏热冬冷地区建筑能耗的影响研究[J]. 建筑与装饰, 2019(8): 195-196, 198. | 26 | JI W X. Effect of three-story phase change glass windows on building energy consumption in hot summer and cold winter[J]. Architecture and Decoration, 2019(8): 195-196, 198. | 27 | TELKES M. Trombe wall with phase change storage material[C]// Proceedings of the 2nd National Passive Solar Conference, Philadelphia, PA, USA, 1978: 271. | 28 | FELDMAN D, KHAN M A, BANU D. Energy storage composite with an organic PCM[J]. Solar Energy Materials, 1989, 18(6): 333-341. | 29 | FELDMAN D, SHAPIRO M M, BANU D, et al. Fatty acids and their mixtures as phase-change materials for thermal energy storage[J]. Solar Energy Materials, 1989, 18(3): 201-216. | 30 | FELDMAN D, BANU D, HAWES D, et al. Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard[J]. Solar Energy Materials, 1991, 22(2): 231-242. | 31 | Lü S L, ZHU N, FENG G H. Impact of phase change wall room on indoor thermal environment in winter[J]. Energy and Buildings, 2006, 38(1): 18-24. | 32 | MANZ H, EGOLF P W, SUTER P, et al. TIM-PCM external wall system for solar space heating and daylighting[J]. Solar Energy, 1997, 61(6): 369-379. | 33 | 石超. 相变储能材料RT28在建筑墙体中的应用研究[D]. 合肥: 安徽建筑大学, 2015. | 33 | SHI C. Research on the application of phase change material RT28 in the building wall[D]. Hefei: Anhui Jianzhu University, 2015. | 34 | 任海洋, 刘素芳, 刘洋. 复合相变材料建筑墙体保温性能试验及研究[J]. 建筑技术, 2016, 47(11): 983-986. | 34 | REN H Y, LIU S F, LIU Y. Experimental research on thermal insulation performance of building wall with composite phase change materials[J]. Architecture Technology, 2016, 47(11): 983-986. | 35 | KARKRI M, LACHHEB M, ALBOUCHI F, et al. Thermal properties of smart microencapsulated paraffin/plaster composites for the thermal regulation of buildings[J]. Energy and Buildings, 2015, 88: 183-192. | 36 | KUZNIK F, VIRGONE J. Experimental investigation of wallboard containing phase change material: data for validation of numerical modeling[J]. Energy and Buildings, 2009, 41(5): 561-570. | 37 | LECOMPTE T, LE BIDEAU P, GLOUANNEC P, et al. Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material[J]. Energy and Buildings, 2015, 94: 52-60. | 38 | 战伟. 相变微胶囊建筑围护结构节能效果的实验研究[D]. 深圳: 深圳大学, 2016. | 38 | ZHAN W. Experimental study on energy saving effect of phase change microcapsule building envelope[D]. Shenzhen: Shenzhen University, 2016. | 39 | ZHANG M, MEDINA M A, KING J B. Development of a thermally enhanced frame wall with phase-change materials for on-peak air conditioning demand reduction and energy savings in residential buildings[J]. International Journal of Energy Research, 2005, 29(9): 795-809. | 40 | CASTELLON C, MEDRANO M, ROCA J, et al. Effect of microencapsulated phase change material in sandwich panels[J]. Renewable Energy, 2010, 35(10): 2370-2374. | 41 | SCHOSSIG P, HENNING H M, GSCHWANDER S, et al. Micro-encapsulated phase-change materials integrated into construction materials[J]. Solar Energy Materials and Solar Cells, 2005, 89(2): 297-306. | 42 | CAO V D, PILEHVAR S, SALAS-BRINGAS C, et al. Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications[J]. Energy Conversion and Management, 2017, 133: 56-66. | 43 | YE R D, LIN W Z, YUAN K J, et al. Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material[J]. Applied Energy, 2017, 193: 325-335. | 44 | ZHANG Z G, FANG X M. Study on paraffin/expanded graphite composite phase change thermal energy storage material[J]. Energy Conversion and Management, 2006, 47(3): 303-310. | 45 | ZHANG Z G, SHI G Q, WANG S P, et al. Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material[J]. Renewable Energy, 2013, 50: 670-675. | 46 | XU B W, LI Z J. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage[J]. Applied Energy, 2013, 105: 229-237. | 47 | XU B W, LI Z J. Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites[J]. Energy, 2014, 72: 371-380. | 48 | RAMAKRISHNAN S, WANG X M, SANJAYAN J. Effects of various carbon additives on the thermal storage performance of form-stable PCM integrated cementitious composites[J]. Applied Thermal Engineering, 2019, 148: 491-501. | 49 | 王磊. 被动式太阳能相变墙体蓄热特性影响因素研究[J]. 新型建筑材料, 2018(3): 56-59. | 49 | WANG L. Study on influencing factors of thermal storage characteristics of passive solar transformer[J]. New Building Materials, 2018(3): 56-59. | 50 | CARNEIRO J O, VASCONCELOS G, AZEVEDO S, et al. The evaluation of the thermal behaviour of a mortar based brick masonry wall coated with TiO2 nanoparticles: an experimental assessment towards energy efficient buildings[J]. Energy and Buildings, 2014, 81: 1-8. | 51 | 袁维烨, 章学来, 华维三, 等. 膨胀石墨/三水乙酸钠复合相变材料储热的性能[J]. 化工进展, 2018, 37(11): 4405-4411. | 51 | YUAN W Y, ZHANG X L, HUA W S, et al. Thermal storage performance of sodium acetate trihydrate/expanded graphite composite phase change material[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4405-4411. | 52 | KUZNIK F, VIRGONE J, NOEL J. Optimization of a phase change material wallboard for building use[J]. Applied Thermal Engineering, 2008, 28(11/12): 1291-1298. | 53 | ZHOU D, ZHAO C Y, TIAN Y. Review on thermal energy storage with phase change materials (PCMs) in building applications[J]. Applied Energy, 2012, 92: 593-605. | 54 | CASTELL A, MARTORELL I, MEDRANO M, et al. Experimental study of using PCM in brick constructive solutions for passive cooling[J]. Energy and Buildings, 2010, 42(4): 534-540. | 55 | CHOU H M, CHEN C R, NGUYEN V L. A new design of metal-sheet cool roof using PCM[J]. Energy and Buildings, 2013, 57: 42-50. | 56 | RAMAKRISHNAN S, WANG X M, SANJAYAN J, et al. Development of thermal energy storage cementitious composites (TESC) containing a novel paraffin/hydrophobic expanded perlite composite phase change material[J]. Solar Energy, 2017, 158: 626-635. | 57 | CHUNG M H, PARK J C. Development of PCM cool roof system to control urban heat island considering temperate climatic conditions[J]. Energy and Buildings, 2016, 116: 341-348. | 58 | XU X, ZHANG Y P, LIN K P, et al. Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings[J]. Energy and Buildings, 2005, 37(10): 1084-1091. | 59 | ZHOU G B, ZHANG Y P, LIN K P, et al. Thermal analysis of a direct-gain room with shape-stabilized PCM plates[J]. Renewable Energy, 2008, 33(6): 1228-1236. | 60 | XIAO W, WANG X, ZHANG Y P. Analytical optimization of interior PCM for energy storage in a lightweight passive solar room[J]. Applied Energy, 2009, 86(10): 2013-2018. | 61 | CERON I, NEILA J, KHAYET M. Experimental tile with phase change materials (PCM) for building use[J]. Energy and Buildings, 2011, 43(8): 1869-1874. | 62 | ENTROP A G, BROUWERS H J H, REINDERS A H M E. Experimental research on the use of micro-encapsulated phase change materials to store solar energy in concrete floors and to save energy in dutch houses[J]. Solar Energy, 2011, 85(5): 1007-1020. | 63 | ISMAIL K A R, HENRIQUEZ J R. Parametric study on composite and PCM glass systems[J]. Energy Conversion and Management, 2002, 43(7): 973-993. | 64 | ALAWADHI E M. Using phase change materials in window shutter to reduce the solar heat gain[J]. Energy and Buildings, 2012, 47: 421-429. | 65 | LI S H, ZHONG K C, ZHOU Y Y, et al. Comparative study on the dynamic heat transfer characteristics of PCM-filled glass window and hollow glass window[J]. Energy and Buildings, 2014, 85: 483-492. | 66 | LI S H, SUN G F, ZOU K K, et al. Experimental research on the dynamic thermal performance of a novel triple-pane building window filled with PCM[J]. Sustainable Cities and Society, 2016, 27: 15-22. | 67 | SILVA T, VICENTE R, RODRIGUES F, et al. Development of a window shutter with phase change materials: full scale outdoor experimental approach[J]. Energy and Buildings, 2015, 88: 110-121. | 68 | SILVA T, VICENTE R, RODRIGUES F, et al. Performance of a window shutter with phase change material under summer Mediterranean climate conditions[J]. Applied Thermal Engineering, 2015, 84: 246-256. | 69 | SILVA T, VICENTE R, AMARAL C, et al. Thermal performance of a window shutter containing PCM: numerical validation and experimental analysis[J]. Applied Energy, 2016, 179: 64-84. | 70 | LI D, WU Y Y, LIU C Y, et al. Energy investigation of glazed windows containing nano-PCM in different seasons[J]. Energy Conversion and Management, 2018, 172: 119-128. | 71 | YAO C Q, KONG X F, LI Y T, et al. Numerical and experimental research of cold storage for a novel expanded perlite-based shape-stabilized phase change material wallboard used in building[J]. Energy Conversion and Management, 2018, 155: 20-31. | 72 | KONG X F, LU S L, LI Y R, et al. Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application[J]. Energy and Buildings, 2014, 81: 404-415. | 73 | AHANGARI M, MAEREFAT M. An innovative PCM system for thermal comfort improvement and energy demand reduction in building under different climate conditions[J]. Sustainable Cities and Society, 2019, 44: 120-129. |
|