1 | 李丹, 于小红. 多传感器信息融合在航天侦察中的应用[J]. 兵工自动化, 2012, 31(3): 86-88. | 1 | LI D, YU X H. Application of multi-sensor information fusion in space reconnaissance[J]. Ordnance Industry Automation, 2012, 31(3): 86-88. | 2 | BINGGER P, ZENS M, WOIAS P. Highly flexible capacitive strain gauge for continuous long-term blood pressure monitoring[J]. Biomedical Microdevices, 2012, 14(3): 573-581. | 3 | ACUAUTLA M, BERNARDINI S, GALLAIS L, et al. Ozone flexible sensors fabricated by photolithography and laser ablation processes based on ZnO nanoparticles[J]. Sensors and Actuators B: Chemical, 2014, 203: 602-611. | 4 | CAI L, ZHANG S M, ZHANG Y H, et al. Direct printing for additive patterning of silver nanowires for stretchable sensor and display applications[J]. Advanced Materials Technologies, 2018, 3(2): 221-232. | 5 | AMJADI M, PICHITPAJONGKIT A, LEE S, et al. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite[J]. ACS Nano, 2014, 8(5): 5154-5163. | 6 | PANG C, LEE G Y, KIM T, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres[J]. Nature Materials, 2012, 11(9): 795-801. | 7 | TRUBY R L, WEHNER M, GROSSKOPF A, et al. Soft somatosensitive actuators via embedded 3D printing[J]. Adv. Mater., 2018, 30(15): 176-190. | 8 | RAGONES H, SCHREIBER D, INBERG A, et al. Disposable electrochemical sensor prepared using 3D printing for cell and tissue diagnostics[J]. Sensors and Actuators B: Chemical, 2015, 216: 434-442. | 9 | 孙聚杰. 3D打印材料及研究热点[J]. 丝网印刷, 2013(12): 34-39. | 9 | SUN J J. 3D printing materials and research hotspots[J]. Screen Printing, 2013(12): 34-39. | 10 | YANG H, LEOW W R, CHEN X D, et al. 3D printing of flexible electronic devices[J]. Small Methods, 2018, 2(1): 53-61. | 11 | BALLETTI C, BALLARIN M, GUERR F, et al. 3D printing: state of the art and future perspectives[J]. Journal of Cultural Heritage, 2017, 26: 172-182. | 12 | YAN H, CHEN Z H, ZHENG Y, et al. A high-mobility electron-transporting polymer for printed transistors[J]. Nature, 2009, 457(7230): 679-686. | 13 | KESNER S B, HOWE R D. Design principles for rapid prototyping forces sensors using 3-D printing[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(1): 866-870. | 14 | MUTH J T, VOGT D M, TRUBY R L, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers[J]. Advanced Materials, 2014, 26(36): 6307-6319. | 15 | WEI X J, LI D, JIANG W, et al. 3D printable graphene composite[J]. Sci. Rep., 2015, 5: 11-19. | 16 | 赵木森, 于海波, 孙丽娜, 等. 基于石墨烯/PEDOT:PSS复合材料制备的可穿戴柔性传感器[J]. 中国科学: 技术科学, 2019, 49(7): 851-860. | 16 | ZHAO M S, YU H B, SUN L N, et al. Flexible wearable sensor based on graphene/PEDOT: PSS composite material[J]. Scientia Sinica: Technologica, 2019, 49(7): 851-860. | 17 | WANG X W, LIU Z, ZHANG T. Flexible sensing electronics for wearable/attachable health monitoring[J]. Small, 2017, 13(25): 1602790. | 18 | AN B X, MA Y, LI W B, et al. Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing[J]. Chemical Communications, 2016, 52(73): 10948-10951. | 19 | BAI S, ZHANG S G, ZHOU W P, et al. Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors[J]. Nanomicro Lett., 2017, 9(4): 42-50. | 20 | RAHIMI R, OCHOA M, ZIAIE B, et al.Comparison of direct and indirect laser ablation of metallized paper for inexpensive paper-based sensors[J]. ACS Appl. Mater. Interfaces, 2018, 10(42): 36332-36341. | 21 | SON S, PARK J E, LEE J, et al.Laser-assisted fabrication of single-layer flexible touch sensor[J]. Sci. Rep., 2016, 6: 34629. | 22 | HUANG G W, FENG Q P, XIAO H M, et al. Rapid laser printing of paper-based multilayer circuits[J]. ACS Nano, 2016, 10(9): 88-95. | 23 | ZHAO W, ROVERE T, WEERAWARNE D, et al. Nanoalloy printed and pulse-laser sintered flexible sensor devices with enhanced stability and materials compatibility[J]. ACS Nano, 2015, 9(6): 68-77. | 24 | ZHOU L Y,GAO Q, ZHAN J F, et al. Three-dimensional printed wearable sensors with liquid metals for detecting the pose of snakelike soft robots[J]. ACS Appl. Mater. Interfaces, 2018, 10(27): 23208-23217. | 25 | OTA H, EMAMINEJAD S, GAO Y J, et al. Application of 3D printing for smart objects with embedded electronic sensors and systems[J]. Advanced Materials Technologies, 2016, 1(1): 1600013. | 26 | KALSOOM U, NESTERENKO P N, PAULL B. Recent developments in 3D printable composite materials[J]. RSC Advances, 2016, 6(65): 60355-60371. | 27 | WANG Z Y, ZHANG Q, YUE Y N, et al. 3D printed graphene/polydimethylsiloxane composite for stretchable strain sensor with tunable sensitivity[J]. Nanotechnology, 2019, 30(34): 345501. | 28 | CHRIST J F, ALIHEIDARI N, AMELI A, et al. 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites[J]. Materials & Design, 2017, 131: 394-401. | 29 | EMON M O, CHOI J W. Flexible piezoresistive sensors embedded in 3D printed tires[J]. Sensors, 2017, 17(3): 656. | 30 | MANZANARES P C L, PUMERA M. (Bio)Analytical chemistry enabled by 3D printing: sensors and biosensors[J]. TrAC Trends in Analytical Chemistry, 2018, 103: 110-118. | 31 | LI X D, MAHDI H M, FU Y Y, et al. Self-reinforcing graphene coatings on 3D printed elastomers for flexible radio frequency antennas and strain sensors[J]. Flexible and Printed Electronics, 2017, 2(3): 035001. | 32 | KIM K, PARK J, SUH J H, et al. 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane(TPU) filaments[J]. Sensors and Actuators A: Physical, 2017, 263: 493-500. | 33 | POSTIGLIONE G, NATALE G, GRIFFINI G, et al. Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling[J]. Composites Part A: Applied Science and Manufacturing, 2015, 76: 110-114. | 34 | HUA D C, ZHANG X Q, JI Z Y, et al. 3D printing of shape changing composites for constructing flexible paper-based photothermal bilayer actuator[J]. Journal of Materials Chemistry C, 2018, 6(8): 2123-2131. | 35 | YANG H, LEOW W R, WANG T, et al. 3D printed photoresponsive devices based on shape memory composites[J]. Adv. Mater., 2017, 29(33): 1701627.1-1701627.7. | 36 | OTA H, EMANINEJAD S, GAO Y J, et al. Application of 3D printing for smart objects with embedded electronic sensors and systems[J]. Advanced Materials Technologies, 2016, 1(1): 1600013. | 37 | YUK H, ZHAO X H. A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks[J]. Adv. Mater., 2018, 30(6): 1704028. | 38 | LEI Z Y, WANG Q K, WU P Y. A Multifunctional skin-like sensor based on a printable and thermo-responsive hydrogel[J]. Materials Horizons, 2017, 4(4): 694-700. | 39 | GUO S Z, YANG X L, HEUZEY M C, et al. 3D printing of a multifunctional nanocomposite helical liquid sensor[J]. Nanoscale, 2015, 7(15): 6451-6456. | 40 | AGARWALA S, GOH G L, DINH LE T S, et al. Wearable bandage-based strain sensor for home healthcare: combining 3D aerosol jet printing and laser sintering[J]. ACS Sensors, 2019, 4(1): 218-226. | 41 | MOHAMMED M G, KRAMER R. All-printed flexible and stretchable electronics[J]. Advanced Materials, 2017, 29(19): 1604965. | 42 | RAHIMI R, OCHOA M, YU W Y, et al. Highly stretchable and sensitive unidirectional strain sensor via laser carbonization[J]. ACS Appl. Mater. Interfaces, 2015, 7(8): 4463-4470. | 43 | 楼祺洪. 3D打印技术的原理和分类[J]. 光电产品与资讯, 2013, 1: 25-27. | 43 | LOU Q H. The principle and classification of 3D printing technology[J]. Photoelectric Products and Information, 2013, 1: 25-27. | 44 | ZAREK M, LAYANI M, COOPERSTEIN I, et al. 3D printing of shape memory polymers for flexible electronic devices[J]. Advanced Materials, 2016, 28(22): 4166. | 45 | YANG H, QI D P, LIU Z Y, et al. Soft thermal sensor with mechanical adaptability[J]. Advanced Materials, 2016, 28(41): 9175-9181. | 46 | PATEL D K, SAKHAEI A H, LAYANI M, et al. Highly stretchable and UV curable elastomers for digital light processing based 3D printing[J]. Advanced Materials, 2017, 29(15): 1606000. | 47 | ZHANG Q Q, ZHANG F, MEDARAMETLA S P, et al. 3D printing of graphene aerogels[J]. Small, 2016, 12(13): 1702-1708. | 48 | VUORINEN T, NIITTYNEN J, KANKKUNEN T, et al. Inkjet-printed graphene/PEDOT:PSS temperature sensors on a skin-conformable polyurethane substrate[J]. Sci. Rep., 2016, 6: 35289. |
|