1 | WANG G, ZHANG L, ZHANG J. A review of electrodematerials foelectrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41: 797-828. | 2 | YU Z, DUONG B, ABBITT D, et al. Highly ordered MnO2 nanopillars for enhanced supercapacitor performance[J]. Advanced Materials, 2013, 25(24): 3302-3306. | 3 | YUAN C, WU H B, XIE Y, et al. Mixed transition-metal oxides: design, synthesis, and energy-related applications[J]. Angewandte Chemie International Edition, 2014, 53(6): 1488-1504. | 4 | LIU X, WU D, WANG H, et al. Self-recovering tough gel electrolyte with adjustable supercapacitor performance[J]. Advanced Materials, 2014, 26(25): 4370-4375. | 5 | CAO F, PAN G X, XIA X H, et al. Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application[J]. Journal of Power Sources, 2014, 264: 161-167. | 6 | YANG Z, XU F, ZHANG W, et al. Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application[J]. Journal of Power Sources, 2014, 246: 24-31. | 7 | LI F, XING Y, HUANG M, et al. MnO2 nanostructures with three-dimensional(3D) morphology replicated from diatoms for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(15): 7855-7861. | 8 | FENG C, ZHANG J, HE Y, et al. Sub-3nm Co3O4 nanofilms with enhanced supercapacitor properties[J]. ACS Nano, 2015, 9(2): 1730-1739. | 9 | WANG Z, ZHANG X, LI Y, et al. Synthesis of graphene-NiFe2O4 nanocomposites and their electrochemical capacitive behavior[J]. Journal of Materials Chemistry A, 2013, 1(21):6393-6399. | 10 | VIJAYAKUMAR S, LEE S H, RYU K S. Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance[J]. Electrochimica Acta, 2015, 182: 979-986. | 11 | JADHAV H S, PAWAR S M, JADHAV A H, et al. Hierarchical mesoporous 3D flower-like CuCo2O4/NF for high-performance electrochemical energy storage[J]. Scientific Reports, 2016, 6: 31120. | 12 | HEYDARI H, GHOLIVAND M B. Novel synthesis and characterization of ZnCo2O4 nanoflakes grown on nickel foam as efficient electrode materials for electrochemical supercapacitors[J]. Ionics, 2017, 23(6): 1489-1498. | 13 | WANG Q, ZHU L, SUN L, et al. Facile synthesis of hierarchical porous ZnCo2O4 microspheres for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(3): 982-985. | 14 | JIANG H, MA J, LI C. Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors[J]. Chemical Communications, 2012, 48(37): 4465-4467. | 15 | LIU J, LIU C, WAN Y, et al. Facile synthesis of NiCo2O4 nanorod arrays on Cu conductive substrates as superior anode materials for high-rate Li-ion batteries[J]. CrystEngComm, 2013, 15(8): 1578-1585. | 16 | ZHANG X Q, ZHAO Y C, WANG C G, et al. Facile synthesis of hollow urchin-like NiCo2O4 microspheres for high-performance sodium-ion batteries[J]. Journal of Materials Science, 2016, 51(20): 9296-9305. | 17 | LEI Y, LI J, WANG Y, et al. Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1773-1780. | 18 | ZHANG G, LOU X W. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors[J]. Advanced Materials, 2013, 25(7): 976-979. | 19 | GOMEZ J, KALU E E. High-performance binder-free Co-Mn composite oxide supercapacitor electrode[J]. Journal of Power Sources, 2013, 230: 218-224. | 20 | LI L, ZHANG Y Q, LIU X Y, et al. One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage[J]. Electrochimica Acta, 2014, 116: 467-474. | 21 | XU Y, WANG X, AN C, et al. Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(39): 16480-16488. | 22 | YAN H, LI T, QIU K, et al. Growth and electrochemical performance of porous NiMn2O4 nanosheets with high specific surface areas[J]. Journal of Solid State Electrochemistry, 2015, 19(10): 3169-3175. | 23 | PANG H, DENG J, WANG S, et al. Facile synthesis of porous nickel manganite materials and their morphology effect on electrochemical properties[J]. RSC Advances, 2012, 2(14): 5930-5934. | 24 | DíEZ A, SCHMIDT R, SAGUA A E, et al. Structure and physical properties of nickel manganite NiMn2O4 obtained from nickel permanganate precursor[J]. Journal of the European Ceramic Society, 2010, 30(12): 2617-2624. | 25 | REN L, CHEN J, WANG X, et al. Facile synthesis of flower-like CoMn2O4 microspheres for electrochemical supercapacitors[J]. RSC Advances, 2015, 5(39): 30963-30969. | 26 | ZHANG G Q, LOU X W. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors[J]. Advanced Materials, 2013, 25(7): 976-979. | 27 | DU J, ZHOU G, ZHANG H, et al. Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors[J]. ACS Appl. Mater. Interfaces, 2013, 5(15): 7405-7409. | 28 | 段红珍, 程霞, 罗铭宇, 等.纳米CuFe2O4-rGO复合材料的制备及电化学性能[J]. 无机化学学报, 2017, 33(12): 2208-2214. | 28 | DUAN H Z, CHENG X, LUO M Y, et al. Preparation and electrochemical properties of nano CuFe2O4-rGO composites[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(12): 2208-2214. |
|