[1] LI Q, XU Y, ZHENG S, et al. Recent progress in some amorphous materials for supercapacitors[J]. Small, 2018, 14(28):e1800426. [2] LIU Y, LI X, SHEN W, et al. Multishelled transition metal-based microspheres:synthesis and applications for batteries and supercapacitors[J]. Small, 2019, 15(32):1804737. [3] CUI Y, ZHANG J, JIN C, et al. Ionic liquid-controlled growth of NiCo2S4 3D hierarchical hollow nanoarrow arrays on Ni foam for superior performance binder free hybrid supercapacitors[J]. Small, 2019, 15(3):e1804318. [4] ZHANG Y, MA M, YANG J, et al. Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors[J]. Nanoscale, 2014, 6(16):9824-9830. [5] SHEN L, YU L, WU H B, et al. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties[J]. Nature Communications, 2015, 6:6694. [6] LIANG K, HE W, DENG X, et al. Controlled synthesis of NiCo2S4 hollow spheres as high-performance electrode materials for supercapacitors[J]. Journal of Alloys and Compounds, 2018, 735:1395-1401. [7] 白瑞娟, 吴强, 符有辉, 等. 稳定且宽电位窗口的掺铁二氧化锰超级电容器材料[J]. 化工进展, 2019, 38:987-992. BAI R J, WU Q, FU Y H, et al. Fe-doped manganese dioxide for stable wide-potential-window supercapacitors[J]. Chemical Industry and Engineering Progress, 2019, 38:987-992. [8] YOU H, ZHANG L, JIANG Y, et al. Bubble-supported engineering of hierarchical CuCo2S4 hollow spheres for enhanced electrochemical performance[J]. Journal of Materials Chemistry A, 2018, 6(13):5265-5270. [9] LI X X, WANG X T, XIAO K, et al. In situ formation of consubstantial NiCo2S4 nanorod arrays toward self-standing electrode for high activity supercapacitors and overall water splitting[J]. Journal of Power Sources, 2018, 402:116-123. [10] YI M, ZHANG C, CAO C, et al. MOF-derived hybrid hollow submicrospheres of nitrogen-doped carbon-encapsulated bimetallic Ni-Co-S nanoparticles for supercapacitors and lithium ion batteries[J]. Inorganic Chemistry, 2019, 58(6):3916-3924. [11] WANG M Q, YE C, BAO S J, et al. Ternary NixCo3−xS4 with a fine hollow nanostructure as a robust electrocatalyst for hydrogen evolution[J]. Chem. Cat. Chem., 2017, 9(22):4169-4174. [12] XIAO X C, HAN E S, ZENG Z Z, et al. Nanostructure NiCo2S4 with different morphologies grown on Ni foam for high-performance supercapacitors[J]. Ionics, 2019, 25(7):3331-3339.. [13] OUYANG Y, YE H, XIA X, et al. Hierarchical electrodes of NiCo2S4 nanosheets-anchored sulfur-doped Co3O4 nanoneedles with advanced performance for battery-supercapacitor hybrid devices[J]. Journal of Materials Chemistry A, 2019, 7(7):3228-3237. [14] LIN J, WANG Y, ZHENG X, et al. P-doped NiCo2S4 nanotubes as battery-type electrodes for high-performance asymmetric supercapacitors[J]. Dalton Transactions, 2018, 47(26):8771-8778. [15] WANG F, LI G, ZHENG J, et al. Hydrothermal synthesis of flower-like molybdenum disulfide microspheres and their application in electrochemical supercapacitors[J]. RSC Advances, 2018, 8(68):38945-38954. [16] HISSAIN I, ALI A, LAMIEL C, et al. A 3D walking palm-like core-shell CoMoO4@NiCo2S4@nickel foam composite for high-performance supercapacitors[J]. Dalton Transactions, 2019, 48(12):3853-3861. [17] SHAO Y, EL-KADY M F, SUN J, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chemistry Review, 2018, 118(18):9233-9280. [18] CHEN L, CHEN L, AI Q, et al. Flexible all-solid-state supercapacitors based on freestanding, binder-free carbon nanofibers@polypyrrole@graphene film[J]. Chemical Engineering Journal, 2018, 334:184-190.
|