1 |
JAMPA S, JAMIESON A M, CHAISUWAN T, et al. Achievement of hydrogen production from autothermal steam reforming of methanol over Cu-loaded mesoporous CeO2, and Cu-loaded mesoporous CeO2-ZrO2, catalysts[J]. International Journal of Hydrogen Energy, 2017, 42(22): 15073-15084.
|
2 |
HUANG G, LIAW B J, JHANG C J, et al. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. International Journal of Hydrogen Energy, 2009, 358(1): 7-12.
|
3 |
POUR V, BARTON J, BENDA A. Kinetics of catalyzed reaction of methanol with water vapour[J]. Collection of Czechoslovak Chemical Communications, 1975, 40(10): 2923-2934.
|
4 |
SANTACESARIA E, CARRA S. Kinetics of catalytic steam reforming of methanol in a CSTR reactor[J]. Applied Catalysis, 1983, 5(3): 345-358.
|
5 |
LEE J K, KO J B, KIM D H. Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor[J]. Applied Catalysis A: General, 2004, 278(1): 25-35.
|
6 |
AGRELL J, BIRGERSSON H, BOUTONNET M. Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation[J]. Journal of Power Source, 2002, 106(12): 249-257.
|
7 |
AGRELL J, BIRGERSSON H, BOUTONNET M, et al. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3[J]. Journal of Catalysis, 2003, 219(2): 389-403.
|
8 |
VANDERBORGH N E, GOODBY B E, SPRINGER T E. Oxygen exchange reactions during methanol steam reforming[C]//New Jersey: Proc. 32nd International Power Sources Symposium, Electrochemical Society Inc., 1986: 623-628.
|
9 |
CHOI Y, STENGER H G. Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/A12O3 catalyst[J]. Applied Catalysis B: Environmental, 2002, 38(4): 259-269.
|
10 |
李言浩, 马沛生, 苏旭, 等. 铜系催化剂上甲醉蒸汽转化制氢过程的原位红外研究[J]. 催化学报, 2003, 24(2): 93-96.
|
|
LI Y H, MA P S, SU X, et al. Study on process of methanol steam-reforming to hydrogen over CuO/ZnO/Al2O3 catalyst by in situ infrared spectroscopy[J]. Chinese Journal of Catalysis, 2003, 24(2): 93-96.
|
11 |
BREEN J P, ROSS J R H. Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts[J]. Catalysis Today, 1999, 51(3): 521-533.
|
12 |
PURNAMA H, RESSLER T, JENTOFT R E, et al. CO formation/selectivity for steam reforming of methanol with a commercial Cu/ZnO/A12O3 catalyst[J]. Applied Catalysis A: General, 2004, 259(1): 83-94.
|
13 |
PEPPLEY B A, AMPHLETT J C, KEARNS L M, et al. Methanol-steam reforming on Cu/ZnO/Al2O3 part 1: the reaction network[J]. Applied Catalysis A: General, 1999, 179(1/2): 21-29.
|
14 |
PEPPLEY B A, AMPHLETT J C, KEARNS L M, et al. Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts part 2: a comprehensive kinetic model[J]. Applied Catalysis A: General, 1999, 179(1/2): 31-49.
|
15 |
KOBAYASHI H, TAKEZAWA N, MINOCHI C. Methanol reforming reaction over copper-containing mixed oxides[J]. Chemistry Letters, 1976, 5(12): 1347-1350.
|
16 |
TAKEZAWA N, IWASA N. Steam reforming and dehydrogenation of methanol: difference in the catalytic functions of copper and group VIII metals[J]. Catalysis Today, 1997, 36(1): 45-56.
|
17 |
张磊, 潘立卫, 倪长军, 等. CuO/ZnO/CeO2/ZrO2催化剂上甲醇水蒸气重整制氢反应机理研究[J]. 大连理工大学学报, 2014, 54(1): 13-19.
|
|
ZHANG L, PAN L W, NI C J, et al. Research on mechanism of methanol steam reforming for hydrogen-making over CuO/ZnO/CeO2/ZrO2 catalyst[J]. Journal of Dalian University of Technology, 2014, 54(1): 13-19.
|
18 |
JIANG C J, TRIMM D L, WAINWRIGHT M S, et al. Kinetic study of steam reforming of methanol over copper-based catalysts[J]. Applied Catalysis A: General, 1993, 93(2): 245-255.
|
19 |
TESSER R, SERIO M D, SANTACESARIA E. Methanol steam reforming: a comparison of different kinetics in the simulation of a packed bed reactor[J]. Chemical Engineering Journal, 2009, 154(1/2/3): 69-75.
|
20 |
AGARWAL V, PATEL S, PANT K K. H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: transient deactivation kinetics modeling[J]. Applied Catalysis A: General, 2005, 279(1/2): 155-164.
|
21 |
KIM J H, JANG Y S, KIM J C, et al. Anodic aluminum oxide supported Cu-Zn catalyst for oxidative steam reforming of methanol[J]. Korean Journal of Chemical Engineering, 2019, 36(3): 368-376.
|
22 |
LI Y F, LIN W M, YU L, et al. Kinetics of methanol steam reforming over COPZr-2 catalyst[J]. Journal of Natural Gas Chemistry, 2008, 17(2): 171-174.
|
23 |
PATEL S, PANT K K. Activity and stability enhancement of copper-alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol[J]. Journal of Power Sources, 2006, 159(1): 139-143.
|
24 |
RIBEIRINHA P, MATEOS-PEDRERO C, BOAVENTURA M, et al. CuO/ZnO/Ga2O3 catalyst for low temperature MSR reaction: synthesis, characterization and kinetic model[J]. Applied Catalysis B: Environmental, 2018, 221: 371-379.
|
25 |
王胜年, 洪学伦, 王树东, 等. Cr-Zn催化剂上甲醇水蒸气转化反应动力学Ⅰ.本征动力学[J]. 石油化工, 2001, 30(4): 259-262.
|
|
WANG S N, HONG X L, WANG S D, et al. Reaction kinetics of methanol steam reforming over Cr-Zn catalyst for PEMFC Ⅰ. Model of intrinsic kinetics[J]. Petrochemical Technology, 2001, 30(4): 259-262.
|
26 |
王胜年, 王树东, 吴迪镛, 等. Cr-Zn催化剂上甲醇水蒸气转化反应动力学Ⅱ.宏观动力学[J]. 石油化工, 2001, 30(8): 593-596.
|
|
WANG S N, WANG S D, WU D Y, et al. Reaction kinetics of methanol steam reforming over Cr-Zn catalyst for PEMFC Ⅱ. Model of macro kinetics[J]. Petrochemical Technology, 2001, 30(8): 593-596.
|
27 |
CHIN Y H, DAGLE R, HU J, et al. Steam reforming of methanol over highly active Pd/ZnO catalyst[J]. Catalysis Today, 2002, 77(1/2): 79-88.
|
28 |
AZENHA C S R, MATEOS-PEDRERO C, QUEIROS S, et al. Innovative ZrO2-supported CuPd catalysts for the selective production of hydrogen from methanol steam reforming[J]. Applied Catalysis B: Environmental, 2017, 203: 400-407.
|
29 |
WICHERT M, ZAPF R, ZIOGAS A, et al. Kinetic investigations of the steam reforming of methanol over a Pt/In2O3/Al2O3 catalyst in microchannels[J]. Chemical Engineering Science, 2016, 155: 201-209.
|
30 |
MARTINELLI M, JACOBS G, GRAHAM U M, et al. Methanol steam reforming: Na doping of Pt/YSZ provides fine tuning of selectivity[J]. Catalysts, 2017, 7(5): 148.
|
31 |
IDEM R O, BAKHSHI N N. Kinetic modeling of the production of hydrogen from the methanol-steam reforming process over Mn-promoted coprecipitated Cu-Al catalyst[J]. Chemical Engineering Science, 1996, 51(14): 3697-3708.
|
32 |
蒋元力, 黄强, 王福安, 等. 在Cu/ZnO/Al2O3催化剂上进行甲醇蒸气重整的动力学研究[J]. 燃料化学学报, 2001, 29(4): 347-350.
|
|
JIANG Y L, HUANG Q, WANG F A, et al. Kinetic study of methanol steam reforming over Cu/ZnO/Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2001, 29(4): 347-350.
|
33 |
PATEL S, PANT K K. Experimental study and mechanistic kinetic modeling for selective production of hydrogen via catalytic steam reforming of methanol[J]. Chemical Engineering Science, 2007, 62(18/19/20): 5425-5435.
|
34 |
SA S, SOUSA J M, MENDES A. Steam reforming of methanol over a CuO/ZnO/Al2O3 catalyst, part I: kinetic modelling[J]. Chemical Engineering Science, 2011, 66(20): 4913-4921.
|
35 |
AMPHLETT J C, CREBER K A M, DAVIS J M, et al. Hydrogen production by steam reforming of methanol for polymer electrolyte fuel-cells[J]. International Journal of Hydrogen Energy, 1994, 19(2): 131-137.
|
36 |
THATTARATHODY R, ARTOUL M, DIGILOV R M, et al. Pressure, diffusion, and S/M ratio effects in methanol steam reforming kinetics[J]. Industrial & Engineering Chemistry Research, 2018, 57(9): 3175-3186.
|
37 |
CAO C, XIA G, HOLLADAY J, et al. Kinetic studies of methanol steam reforming over Pd/ZnO catalyst using a microchannel reactor[J]. Applied Catalysis A: General, 2004, 262(1): 19-29.
|
38 |
袁彪, 于新海, 王正东, 等. 在涂层催化剂上甲醇水蒸气重整的本征动力学研究[J]. 石油化工, 2005, 34(11): 1055-1059.
|
|
YUAN B, YU X H, WANG Z D, et al. Intrinsic kinetics of methanol-steam reforming over coating catalyst[J]. Petrochemical Technology, 2005, 34(11): 1055-1059.
|
39 |
王国强. 甲醇水蒸气重整制氢过程强化特性研究[D]. 重庆: 重庆大学, 2014.
|
|
WANG G Q. Process intensification characteristic study on methanol steam reforming for hydrogen production[D]. Chongqing: Chongqing University, 2014.
|
40 |
YONG S T, OOI C W, CHAI S P, et al. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes[J]. International Journal of Hydrogen Energy, 2013, 38(22): 9541-9552.
|
41 |
王胜年. Cr-Zn催化剂上甲醇水蒸气重整制氢反应动力学研究[D]. 大连: 中科院大连化学物理研究所, 2000.
|
|
WANG S N. Kinetic study of steam reforming of methanol over Cr-Zn catalyst for PEMFC[D]. Dalian: Dalian Institute of Chemical Physics, Chinese Academy of Scieces, 2000.
|
42 |
HERDEM M S, SINAKI M Y, FARHAD S, et al. An overview of the methanol reforming process: comparison of fuels, catalysts, reformers, and systems[J]. International Journal of Energy Research, 2019, 43: 5076-5105.
|
43 |
COMMENGE J M, FALK L, CORRIOU J P, et al. Optimal design for flow uniformity in microchannel reactors[J]. American Institute of Chemical Engineers Journal, 2002, 48(2): 345-358.
|
44 |
ASPREY S P, WOJCIECHOWSKI B W, PEPPLEY B A. Kinetic studies using temperature-scanning: the steam-reforming of methanol[J]. Applied Catalysis A: General, 1999, 179(1): 51-70.
|