1 |
CHOI Y J , LEE S Y . Microbial production of short-chain alkanes[J]. Nature, 2013, 502(7472): 571-574.
|
2 |
SHEPPARD M J , KUNJAPUR A M , WENCK S J , et al . Retro-biosynthetic screening of a modular pathway design achieves selective route for microbial synthesis of 4-methyl-pentanol[J]. Nature Communications, 2014, 5: 5031-5030.
|
3 |
KUNJAPUR A M , TARASOVA Y , PRATHER K L . Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli [J]. Journal of the American Chemical Society, 2014, 136(33): 11644-11654.
|
4 |
GONZáLEZ-PAJUELO M , MEYNIAL-SALLES I , MENDES F , et al . Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol[J]. Metabolic Engineering, 2005, 7(5/6): 329-336.
|
5 |
RO D K, PARADISE E M , OUELLET M , et al . Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943.
|
6 |
顾洋, 李江华, 堵国成, 等 . 微生物代谢工程的研究进展和展望[J].生物产业技术, 2017(1): 64-70.
|
|
GU Y , LI J H , DU G C , et al . Research progress and prospects of microbial metabolism engineering[J]. Biotechnology, 2017 (1): 64-70.
|
7 |
HOLTZ W J , KEASLING J D . Engineering static and dynamic control of synthetic pathways[J]. Cell, 2010, 140(1): 19-23.
|
8 |
TAN S Z , PRATHER K L . Dynamic pathway regulation: recent advances and methods of construction[J]. Curr. Opin. Chem. Biol., 2017, 41: 28-35.
|
9 |
BINDER D , FROHWITTER J , MAHR R , et al . Light-controlled cell factories: employing photocaged isopropyl-β-d-thiogalactopyranoside for light-mediated optimization of lac promoter-based gene expression and (+)-valencene biosynthesis in Corynebacterium glutamicum [J]. Appl. Environ. Microbiol., 2016, 82(20): 6141-6149.
|
10 |
BAUMSCHLAGER A , AOKI S K , KHAMMASH M . Dynamic blue light-inducible T7 RNA polymerases (opto-T7RNAPs) for precise spatiotemporal gene expression control[J]. ACS Synthetic Biology, 2017, 6(11): 2157-2167.
|
11 |
MILLER M B , BASSLER B L . Quorum sensing in bacteria[J]. Annual Review of Microbiology, 2000, 55(1): 165-199.
|
12 |
FRANCISCO S , VICENTE R , VERóNICA D , et al . Fungal light-oxygen-voltage domains for optogenetic control of gene expression and flocculation in yeast[J]. mBio, 2018, 9(4): 1-14.
|
13 |
CHAKSHUSMATHI G , MONDAL K , LAKSHMI G S , et al . Design of temperature-sensitive mutants solely from amino acid sequence[J]. Proc. Natl. Acad. Sci. U S A, 2004, 101(21): 7925-7930.
|
14 |
LOWMAN H B , BINA M . Temperature-mediated regulation and downstream inducible selection for controlling gene expression from the bacteriophage lambda pL promoter[J]. Gene, 1990, 96(1): 133-136.
|
15 |
VALDEZ-CRUZ N A , CASPETA L , PéREZ N O , et al . Production of recombinant proteins in E. coli by the heat inducible expression system based on the phage lambda PL and/or PR promoters[J]. Microbial Cell Factories, 2010, 9(1): 1-16.
|
16 |
SHI H , KYUWA K , TAKASU M , et al . Temperature-induced expression of phb genes in Escherichia coli and the effect of temperature patterns on the production of poly-3-hydroxybutyrate[J]. Journal of Bioscience & Bioengineering, 2001, 91(1): 21-26.
|
17 |
ZHOU L , DENG C , CUI W J , et al . Efficient L-alanine production by a thermo-regulated switch in Escherichia coli [J]. Applied Biochemistry & Biotechnology, 2016, 178(2): 1-14.
|
18 |
ZHANG C , QI J , LI Y , et al . Production of α‐ketobutyrate using engineered Escherichia coli via temperature shift[J]. Biotechnology & Bioengineering, 2016, 113(9): 2054-2059.
|
19 |
ZHOU P , XIE W , YAO Z , et al . Development of a temperature-responsive yeast cell factory using engineered Gal4 as a protein switch[J]. Biotechnol. Bioeng., 2018, 115(5): 1321-1330.
|
20 |
WESTFALL P J , PITERA D J , LENIHAN J R , et al . Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): 655-656.
|
21 |
XIE W , YE L , LV X , et al . Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2015, 28: 8-18.
|
22 |
TEIXEIRA P G , FERREIRA R , ZHOU Y J , et al . Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2017, 16(1): 45-55.
|
23 |
WILLIAMS T C , ESPINOSA M I , NIELSEN L K , et al . Dynamic regulation of gene expression using sucrose responsive promoters and RNA interference in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2015, 14(1): 43-52.
|
24 |
SOMA Y , TSURUNO K , WADA M , et al . Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch[J]. Metabolic Engineering, 2014, 23(5): 175.
|
25 |
TAN S Z , MANCHESTER S , PRATHER K L . Controlling central carbon metabolism for improved pathway yields in Saccharomyces cerevisiae [J]. ACS Synthetic Biology, 2015, 5(2):116-124.
|
26 |
PENG B , PLAN M R , CARPENTER A , et al . Coupling gene regulatory patterns to bioprocess conditions to optimize synthetic metabolic modules for improved sesquiterpene production in yeast[J]. Biotechnology for Biofuels, 2017, 10(1): 43-58.
|
27 |
GOPALAKRISHNAN S , KROGSTIE J , SINDRE G . Engineering triterpene production in Saccharomyces cerevisiae - beta - amyrin synthase from Artemisia annua [J]. Febs Journal, 2008, 275(8): 1852-1859.
|
28 |
LALWANI M A , ZHAO E M , AVALOS J L . Current and future modalities of dynamic control in metabolic engineering[J]. Current Opinion in Biotechnology, 2018, 52: 56-65.
|
29 |
MICHENER J K , THODEY K , LIANG J C , et al . Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways[J]. Metabolic Engineering, 2012, 14(3): 212-222.
|
30 |
DAHL R H , ZHANG F , ALONSO-GUTIERREZ J , et al . Engineering dynamic pathway regulation using stress-response promoters[J]. Nature Biotechnology, 2013, 31(11): 1039-1046.
|
31 |
YUAN J , CHING C B . Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2015, 14(1): 38-47.
|
32 |
RAMAN S , ROGERS J K , TAYLOR N D , et al . Evolution-guided optimization of biosynthetic pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50):17803-17808.
|
33 |
YOUNGER A K , DALVIE N C , ROTTINGHAUS A G , et al . Engineering modular biosensors to confer metabolite-responsive regulation of transcription[J]. ACS Synthetic Biology, 2017, 6(2):311-325.
|
34 |
FARMER W , LIAO J . Improving lycopene production in Escherichia coli by engineering metabolic control[J]. Nature Biotechnology, 2000, 18(5): 533-537.
|
35 |
XU P , LI L , ZHANG F , et al . Improving fatty acids production by engineering dynamic pathway regulation and metabolic control[J]. Proc. Natl. Acad. Sci. U S A, 2014, 111(31): 11299-11304.
|
36 |
DAVID F , NIELSEN J , SIEWERS V . Flux control at the malonyl-CoA node through hierarchical dynamic pathway regulation in Saccharomyces cerevisiae [J]. ACS Synthetic Biology, 2016, 5(3): 224-233.
|
37 |
BREAKER R R . Prospects for riboswitch discovery and analysis[J]. Molecular Cell, 2011, 43(6): 867-879.
|
38 |
ZHOU L B , ZENG A P . Exploring lysine riboswitch for metabolic flux control and improvement of l-lysine synthesis in Corynebacterium glutamicum [J]. ACS Synthetic Biology, 2015, 4(6): 729-734.
|
39 |
HASELTINE E , ARNOLD F . Implications of rewiring bacterial quorum sensing[J]. Applied & Environmental Microbiology, 2008, 74(2): 437-445.
|
40 |
LIU H , LU T . Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli [J]. Metabolic Engineering, 2015, 29: 135-141.
|
41 |
SOMA Y , HANAI T . Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production[J]. Metabolic Engineering, 2015, 30: 7-15.
|
42 |
WILLIAMS T C , NIELSEN L K , VICKERS C E . Engineered quorum sensing using pheromone-mediated cell-to-cell communication in Saccharomyces cerevisiae [J]. ACS Synth. Biol., 2013, 2(3): 136-149.
|
43 |
WILLIAMS T C , AVERESCH N J , WINTER G , et al . Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2015, 29: 124-134.
|
44 |
XU X , DU Z , LIU R , et al . A single-component optogenetic system allows stringent switch of gene expression in yeast cells[J]. ACS Synth. Biol., 2018, 7(9): 2045-2053.
|
45 |
GUPTA A , REIZMAN I M , REISCH C R , et al . Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit[J]. Nature Biotechnology, 2017, 35(3): 273-279.
|