化工进展 ›› 2019, Vol. 38 ›› Issue (10): 4542-4553.DOI: 10.16085/j.issn.1000-6613.2019-0110
收稿日期:
2019-01-16
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
吴丹
作者简介:
吴丹(1981—),男,博士,讲师,硕士生导师,研究方向为均相催化剂多相化。E-mail:基金资助:
Dan WU(),Cong ZHOU,Suying ZHAO
Received:
2019-01-16
Online:
2019-10-05
Published:
2019-10-05
Contact:
Dan WU
摘要:
因催化剂与产物不易分离的问题,氢甲酰化反应催化剂固载化研究受到广泛关注。本文从分子筛、二氧化硅、碳材料、金属氧化物、磁性纳米粒子、有机聚合物和离子液体这些不同负载材料的角度综述了过去十年来的相关研究结果,并对不同载体的优缺点和发展前景进行了简要分析。固载型催化剂分为3种不同的构建方式:载体与配体连接、载体与金属连接以及载体同时与配体和金属连接。第3种构建方式制备的催化剂更稳定,常在二氧化硅作为载体中使用。第一种构建方式为催化剂制备提供了多样性,在无机物和有机物作为载体中都有广泛使用,其中,含磷的有机聚合物在提供良好催化剂效果的同时,也提高了催化剂的稳定性,对未来的研究方向有一定的指导意义。
中图分类号:
吴丹,周聪,赵素英. 负载型烯烃氢甲酰化反应催化剂研究进展[J]. 化工进展, 2019, 38(10): 4542-4553.
Dan WU,Cong ZHOU,Suying ZHAO. Research progress of immobilized catalysts for olefin hydroformylation[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4542-4553.
1 | OttoROELEN. Production of oxygenated carbon compounds: US2327066A [P]. 1943-08-17. |
2 | FRANKER, SELENTD, BORNERA. Applied hydroformylation[J]. Chemical Review, 2012, 112(11): 5675-5732. |
3 | TAKAHASHIK, YAMASHITAM, NOZAKIK. Tandem hydroformylation/hydrogenation of alkenes to normal alcohols using Rh/Ru dual catalyst or Ru single component catalyst[J]. J. Am. Chem. Soc., 2012, 134(45): 18746-18757. |
4 | DONGK, FANGX, JACKSTELLR, et al. A novel rhodium-catalyzed domino-hydroformylation-reaction for the synthesis of sulphonamides[J]. Chemical Communication, 2015, 51(24): 5059-5062. |
5 | FLEISCHERI, DYBALLAK M, JENNERJAHNR, et al. From olefins to alcohols: efficient and regioselective ruthenium-catalyzed domino hydroformylation/reduction sequence[J]. Angewandte Chemie: International Edition, 2013, 52(10): 2949-2953. |
6 | TAKAHASHIK, YAMASHITAM, TANAKAY, et al. Ruthenium/C5Me5/bisphosphine- or bisphosphite-based catalysts for normal-selective hydroformylation[J]. Angewandte Chemie: International Edition, 2012, 51(18): 4383-4387. |
7 | JIAX, WANGZ, XIAC, et al. Spiroketal-based phosphorus ligands for highly regioselective hydroformylation of terminal and internal olefins[J]. Chemistry, 2012, 18(48): 15288-15295. |
8 | DYDIOP, DZIKW I, LUTZM, et al. Remote supramolecular control of catalyst selectivity in the hydroformylation of alkenes[J]. Angewandte Chemie: International Edition, 2011, 50(2): 396-400. |
9 | AGBOSSOUF, CARPENTIERJ F, MORTREUXA. Asymmetric hydroformylation[J]. Chemical Review, 1995, 95(7): 2485-2506. |
10 | ZHANHUAM A, XUENUANL I U, GUOHUAY, et al. Progress in supported catalyst for hydroformylation of olefins[J]. Chemical Industry and Engineering Progress, 2007, 26(12): 1675-1680. |
11 | NEVESA C B, CALVETEM J F, MELOT, et al. Immobilized catalysts for hydroformylation reactions: a versatile tool for aldehyde synthesis[J]. European Journal of Organic Chemistry, 2012(32): 6309-6320. |
12 | LIC, WANGW, YANL, et al. A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts[J]. Frontiers of Chemical Science and Engineering, 2018, 12(1): 113-123. |
13 | 高李杰, 孟凯, 姜伟丽,等. 负载固相的铑基催化剂应用于烯烃氢甲酰化反应的研究进展[J]. 化工进展, 2018, 34(4): 1433-1441. |
GAOL J, MENGK, JIANGW L, et al. Research progress of immobilized Rh-based catalysts on solid supports for olefin hydroformylation[J]. Chemical Industry and Engineering Progress, 2018, 34(4): 1433-1441. | |
14 | LIP, KAWIS. SBA-15-based polyamidoamine dendrimer tethered Wilkinson's rhodium complex for hydroformylation of styrene[J]. Journal of Catalysis, 2008, 257(1): 23-31. |
15 | LIP, KAWIS. Dendritic SBA-15 supported Wilkinson's catalyst for hydroformylation of styrene[J]. Catalysis Today, 2008, 131(1/2/3/4): 61-69. |
16 | BAE J A, SONGK C, JEONJ K, et al. Effect of pore structure of amine-functionalized mesoporous silica-supported rhodium catalysts on 1-octene hydroformylation[J]. Microporous and Mesoporous Materials, 2009, 123(1/2/3): 289-297. |
17 | ZHOUW, HED. Anchoring RhCl(CO)(PPh3)2 to -PrPPh2 modified MCM-41 as effective catalyst for 1-octene hydroformylation[J]. Catalysis Letters, 2009, 127(3/4): 437-443. |
18 | ZHOUW, LIY, HED. Substrate influences on activity and stability of SBA-15-Pr-anchored Rh-P complex catalysts for olefin hydroformylation[J]. Applied Catalysis A:General, 2010, 377(1/2): 114-120. |
19 | ZHOUW, HED. Lengthening alkyl spacers to increase SBA-15-anchored Rh-P complex activities in 1-octene hydroformylation[J]. Chemical Communications, 2008, 44(44): 5839-5841. |
20 | ZHOUW, HED. A facile method for promoting activities of ordered mesoporous silica-anchored Rh-P complex catalysts in 1-octene hydroformylation[J]. Green Chemistry, 2009, 11(8): 1146-1154. |
21 | MARRASF, WANGJ, COPPENSM O, et al. Ordered mesoporous materials as solid supports for rhodium-diphosphine catalysts with remarkable hydroformylation activity[J]. Chemical Communications, 2010, 46(35): 6587-6589. |
22 | MARRASF, KLUWERA M, SIEKIERZYCKAJ R, et al. Phosphorus ligand imaging with two-photon fluorescence spectroscopy: towards rational catalyst immobilization[J]. Angewandte Chemie: International Edition, 2010, 49(32): 5480-5484. |
23 | HENRIQUESC A, RODRIGUESF M S, CARRILHOR M B, et al. Reusable MCM-41 immobilized Rh(I) hydroformylation catalysts built on binaphthyl-based phosphoramidite and phosphite ligands[J]. Current Organic Chemistry, 2016, 20(13): 1445-1453. |
24 | MAY, QINGS, YIND, et al. Rh-based catalysts supported on MCM-41-type mesoporous silica for dicyclopentadiene hydroformylation[J]. Catalysis Today, 2015, 258(1): 64-69. |
25 | LIX M, DINGY J, JIAOG, et al. Hydroformylation of methyl-3-pentenoate over a phosphite ligand modified Rh/SiO2 catalyst[J]. Journal of Natural Gas Chemistry, 2008, 17(4): 351-354. |
26 | LIX M, DINGY J, JIAOG P, et al. Phosphite ligand modified supported rhodium catalyst for hydroformylation of internal olefins to linear aldehydes[J]. Chemical Research in Chinese Universities, 2009, 25(5): 738-739. |
27 | LIX M, DINGY J, JIAOG, et al. A new concept of tethered ligand-modified Rh/SiO2 catalyst for hydroformylation with high stability[J]. Applied Catalysis A: General, 2009, 353(2): 266-270. |
28 | LIUJ, YANL, JIANGM, et al. Effect of lengthening alkyl spacer on hydroformylation performance of tethered-phosphine modified Rh/SiO2 catalyst[J]. Chinese Journal of Catalysis, 2016, 37(2):268-272. |
29 | LIUJ, YANL, DINGY J, et al. Promoting effect of Al on tethered ligand-modified Rh/SiO2 catalysts for ethylene hydroformylation[J]. Applied Catalysis A: General, 2015, 492(4): 127-132. |
30 | SUDHEESHN, SHARMAS K, SHUKLAR S, et al. HRh(CO)(PPh3)3 encapsulated mesopores of hexagonal mesoporous silica (HMS) acting as nanophase reactors for effective catalytic hydroformylation of olefins[J]. Journal of Molecular Catalysis A: Chemical, 2008, 296(1/2): 61-70. |
31 | SUDHEESHN, SHARMAS K, SHUKLAR S, et al. Investigations on the kinetics of hydroformylation of 1-hexene using HRh(CO)(PPh3)3 encapsulated hexagonal mesoporous silica as a heterogeneous catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2010, 316(1/2): 23-29. |
32 | SUDHEESHN, PARMARJ N, SHUKLAR S. Hydroformylation of propene heterogeneously catalyzed by HRh(CO)(PPh3)3 encapsulated in to hexagonal mesoporous silica-parametric variation and mass transfer study[J]. Applied Catalysis A: General, 2012, 415/416: 124-131. |
33 | SUDHEESHN, CHATURVEDIA K, SHUKLAR S. RhCl(TPPTS)3 encapsulated into the hexagonal mesoporous silica as an efficient heterogeneous catalyst for hydroformylation of vinyl esters[J]. Applied Catalysis A: General, 2011, 409/410: 99-105. |
34 | NANDIM, MONDALP, ISLAMM, et al. Highly efficient hydroformylation of 1-hexene over an ortho-metallated rhodium(I) complex anchored on a 2D-hexagonal mesoporous material[J]. European Journal of Inorganic Chemistry, 2011(2): 221-227. |
35 | KHOKHARM D, SHUKLAR S, JASRAR V. Rh complex encapsulated hexagonal mesoporous silica as an efficient heterogeneous catalyst for the selective hydroformylation of styrene[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114(1): 265-277. |
36 | MAZ, LIUX, YANGG, et al. Hydroformylation of mixed octenes catalyzed by supported rhodium-based catalyst[J]. Fuel Processing Technology, 2009, 90(10): 1241-1246. |
37 | LIX, ZHANGY, MENGM, et al. Silicalite-1 membrane encapsulated Rh/activated-carbon catalyst for hydroformylation of 1-hexene with high selectivity to normal aldehyde[J]. Journal of Membrane Science, 2010, 347(1/2): 220-227. |
38 | TANM, WANGD, AIP, et al. Enhancing catalytic perforrnance of activated carbon supported Rh catalyst on heterogeneous hydroformylation of 1-hexene via introducing surface oxygen-containing groups[J]. Applied Catalysis A: General, 2016, 527: 53-59. |
39 | GANGAV S R, DABBAWALAA A, MUNUSAMYK, et al. Rhodium complexes supported on nanoporous activated carbon for selective hydroformylation of olefins[J]. Catalysis Communications, 2016, 84: 21-24. |
40 | IONIY V, LYUBIMOVS E, DAVANKOVV A, et al. Modified graphene oxide as a support for rhodium nanoparticles active in olefin hydroformylation[J]. Russian Chemical Bulletin, 2014, 63(10): 2243-2249. |
41 | TANM, YANGG, WANGT, et al. Active and regioselective rhodium catalyst supported on reduced graphene oxide for 1-hexene hydroformylation[J]. Catalysis Science & Technology, 2016, 6(4): 1162-1172. |
42 | KONTKANENM L, TUIKKAM, KINNUNENN M, et al. Hydroformylation of 1-hexene over Rh/nano-oxide catalysts[J]. Catalysts, 2013, 3(1): 324-337. |
43 | LANGR, LIT, MATSUMURAD, et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3[J]. Angewandte Chemie: International Edition, 2016, 55(52): 16054-16058. |
44 | WANGL, ZHANGW, WANGS, et al. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst[J]. Nature Communications, 2016, 7: 1-8. |
45 | 马昱博, 高志贤, 吾满江, 等. Fe3O4负载催化剂上双环戊二烯氢甲酰化[J]. 工业催化, 2013, 21(9): 62-66. |
MAY B, GAOZ X, WUM J, et al. Hydroformylation of dicyclopentadiene on Fe3O4 based catalysts[J].Industrial Catalysis,2013,21(9):62-66. | |
46 | MAY, QINGS, LIN, et al. The effect of metal-ligand affinity on Fe3O4 supported Co-Rh catalysts for dicyclopentadiene hydroformylation[J]. International Journal of Chemical Kinetics, 2015, 47(10): 621-628. |
47 | DUANMUC, WUL, GUJ, et al. Magnetic nanoparticle supported triphenylphosphine ligand for the Rh-catalyzed hydroformylation reaction[J]. Catalysis Communications, 2014, 48: 45-49. |
48 | SHAIKHM N, BOUOUDINAM, JIMOHA A, et al. The rhodium complex of bis(diphenylphosphinomethyl)dopamine-coated magnetic nanoparticles as an efficient and reusable catalyst for hydroformylation olefins[J]. New Journal of Chemistry, 2015, 39(9): 7293-7299. |
49 | SHAIKHM N, AZIZM A, HELALA, et al. Magnetic nanoparticle-supported ferrocenylphosphine: a reusable catalyst for hydroformylation of alkene and Mizoroki-Heck olefination[J]. RSC Advances, 2016, 6(48): 41687-41695. |
50 | GARCIAM A S, OLIVEIRAK C B, COSTAJ C S, et al. Rhodium nanoparticles as precursors for the preparation of an efficient and recyclable hydroformylation catalyst[J]. ChemCatChem, 2015, 7(10): 1566-1572. |
51 | OMARS, DUTTAB, NATOURS, et al. Rhodium-complexed hyperbranched poly(ethyleneimine) and polyamidoamine and their non-covalent immobilization on magnetic nanoparticlesnn[J]. Journal of Organometallic Chemistry, 2016, 818: 48-57. |
52 | JIANGM, DINGY J, YANL, et al. Rh catalysts supported on knitting aryl network polymers for the hydroformylation of higher olefins[J]. Chinese Journal of Catalysis, 2014, 35: 1456-1464. |
53 | SUNQ, JIANGM, SHENZ, et al. Porous organic ligands (POLs) for synthesizing highly efficient heterogeneous catalysts[J]. Chemical Communications, 2014, 50(80): 11844-11847. |
54 | JIANGM, YANL, DINGY J, et al. Ultrastable 3V-PPh3 polymers supported single Rh sites for fixed-bed hydroformylation of olefins[J]. Journal of Molecular Catalysis A: Chemical, 2015, 404: 211-217. |
55 | JIANGM, YANL, SUNX, et al. Effect of different synthetic routes on the performance of propylene hydroformylation over 3V-PPh3 polymer supported Rh catalysts[J]. Reaction Kinetics Mechanisms and Catalysis, 2015, 116(1): 223-234. |
56 | LIC, XIONGK, YANL, et al. Designing highly efficient Rh/CPOL-bp&PPh3 heterogenous catalysts for hydroformylation of internal and terminal olefins[J]. Catalysis Science & Technology, 2016, 6(7): 2143-2149. |
57 | LIC Y, YANL, LUL L, et al. Single atom dispersed Rh-biphephos&PPh3@porous organic copolymers: highly efficient catalysts for continuous fixed-bed hydroformylation of propene[J]. Green Chemistry, 2016, 18(10): 2995-3005. |
58 | WANGT, WANGW, LUY, et al. Porous Rh/BINAP polymers as efficient heterogeneous catalysts for asymmetric hydroformylation of styrene: enhanced enantioselectivity realized by flexible chiral nanopockets[J]. Chinese Journal of Catalysis, 2017, 38(4): 691-698. |
59 | SUNQ, DAIZ, SHENGN, et al. Highly efficient heterogeneous hydroformylation over Rh-metalated porous organic polymers: synergistic effect of high ligand concentration and flexible framework[J]. Journal of the American Chemical Society, 2015, 137(15): 5204-5209. |
60 | ZHANGX, LUS, ZHONGM, et al. Rh-PPh3-polymer@mesosilica composite catalyst for the hydroformylation of 1-octene[J]. Chinese Journal of Catalysis, 2015, 36(2): 168-174. |
61 | CHAUVINY, MUSSMANNL, OLIVIERH. A novel class of versatile solvents for two-phase catalysis: hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazoliurn salts[J]. Angewandte Chemie: Internation Edition, 1996, 34: 2698-2700. |
62 | HAUMANNM, RIISAGERA. Hydroformylation in room temperature ionic liquids (RTILs): catalyst and process developments[J]. Chemical Review, 2008, 108: 1474-1497. |
63 | HAUMANNM, DENTLERK, JONIJ, et al. Continuous gas-phase hydroformylation of 1-butene using supported ionic liquid phase (SILP) catalysts[J]. Advanced Synthesis & Catalysis, 2007, 349(3): 425-431. |
64 | HAUMANNM, JAKUTTISM, FRANKER, et al. Continuous gas-phase hydroformylation of a highly diluted technical C4 feed using supported ionic liquid phase catalysts[J]. ChemCatChem, 2011, 3(11): 1822-1827. |
65 | SHYLESHS, HANNAD, WERNERS, et al. Factors influencing the activity, selectivity, and stability of Rh-based supported ionic liquid phase (SILP) catalysts for hydroformylation of propene[J]. ACS Catalysis, 2012, 2(4): 487-493. |
66 | WEIßA, MUNOZM, HAASA, et al. Boosting the Activity in supported ionic liquid-phase-catalyzed hydroformylation via surface functionalization of the carbon support[J]. ACS Catalysis, 2016, 6(4): 2280-2286. |
[1] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[2] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[3] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[4] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[5] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[6] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[7] | 鲁少杰, 刘佳, 冀芊竹, 李萍, 韩月阳, 陶敏, 梁文俊. 硅藻土基复合填料制备及滴滤塔去除二甲苯的性能[J]. 化工进展, 2023, 42(7): 3884-3892. |
[8] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[9] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[10] | 余希希, 张金帅, 雷文, 刘承果. 基于动态共价键自修复的光固化高分子材料研究进展[J]. 化工进展, 2023, 42(7): 3589-3599. |
[11] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[12] | 杨发容, 顾丽莉, 刘洋, 李伟雪, 蔡洁云, 王惠平. 计算机模拟辅助特丁津分子印迹聚合物的制备及应用[J]. 化工进展, 2023, 42(6): 3157-3166. |
[13] | 张耀丹, 孙若溪, 陈鹏程. 以级联反应为基础的多酶共固定载体研究进展[J]. 化工进展, 2023, 42(6): 3167-3176. |
[14] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[15] | 张巍, 秦川, 谢康, 周运河, 董梦瑶, 李婕, 汤云灏, 马英, 宋健. H2-SCR改性铂系催化剂低温脱硝的应用及性能强化挑战[J]. 化工进展, 2023, 42(6): 2954-2962. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |