化工进展 ›› 2019, Vol. 38 ›› Issue (07): 3482-3494.DOI: 10.16085/j.issn.1000-6613.2018-2361
收稿日期:
2018-12-05
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
陈国华
作者简介:
黄孔星(1994—),男,博士研究生。E-mail:<email>hkxing1994@163.com</email>。
基金资助:
Kongxing HUANG(),Guohua CHEN(),Tao ZENG,Kun HU
Received:
2018-12-05
Online:
2019-07-05
Published:
2019-07-05
Contact:
Guohua CHEN
摘要:
Na-Tech(natural-technological)事件是典型的HILP(high-impact low-probability)事件,近年来时有发生,尤其是在危险源高度集中的化工园区。Na-Tech事件演化过程和机理的高度复杂性,使其成为风险评价领域的研究难点。对Na-Tech事件统计文献进行分析,理清最频发的自然灾害类别、最脆弱的设备类型及其致损模式等特性和规律,进一步探究Na-Tech事件演绎过程,包括自然灾害和技术灾害。对当前文献中Na-Tech事件定量风险评价方法进行深入剖析,指出自然灾害与技术灾害的设备致损概率计算是其核心问题。从土地使用规划,设备完整性、鲁棒性与本质安全工艺,安全防护设施,安全教育、管理与合作,事故应急响应,灾后恢复与重建等六方面探讨了Na-Tech事件防控体系。指出自然灾害条件下的设备易损性和多致灾因子耦合作用是Na-Tech事件研究的突破方向,也是进行定量风险评价的关键环节。
中图分类号:
黄孔星, 陈国华, 曾涛, 胡昆. 化工园区Na-Tech事件定量风险评价与防控体系评述[J]. 化工进展, 2019, 38(07): 3482-3494.
Kongxing HUANG, Guohua CHEN, Tao ZENG, Kun HU. Review of quantitative risk assessment and pre-control system of Na-Tech event in Chemical Industry Park[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3482-3494.
序号 | 步骤 | 需求 |
---|---|---|
1 | 外部事件特征分析 | 表征自然灾害频率和强度的参数 |
2 | 目标设备识别 | 考虑的目标设备目录 |
3 | 损坏状态和参考场景识别 | 损坏状态的定义;事件树分析 |
4 | 损伤概率计算 | 设备损伤模型 |
5 | 参考场景后果评估 | 后果分析模型 |
6 | 可能事件组合识别 | 可能事件组合的集合 |
7 | 每种组合概率计算 | 事件组合的概率 |
8 | 每种组合后果计算 | 整体脆弱性地图 |
9 | 风险指数计算 | 整体风险指数 |
表1 Na-Tech事件定量风险评价基本框架[26]
序号 | 步骤 | 需求 |
---|---|---|
1 | 外部事件特征分析 | 表征自然灾害频率和强度的参数 |
2 | 目标设备识别 | 考虑的目标设备目录 |
3 | 损坏状态和参考场景识别 | 损坏状态的定义;事件树分析 |
4 | 损伤概率计算 | 设备损伤模型 |
5 | 参考场景后果评估 | 后果分析模型 |
6 | 可能事件组合识别 | 可能事件组合的集合 |
7 | 每种组合概率计算 | 事件组合的概率 |
8 | 每种组合后果计算 | 整体脆弱性地图 |
9 | 风险指数计算 | 整体风险指数 |
灾种 | 来源 | 易损性分析方法及其适用性、准确度、优缺点 | 致损概率(参数)表征 |
---|---|---|---|
地震 | Lanzano等[ | 通过数据统计分析,确定峰值地面加速度PGA与埋地管道泄漏频率关系,绘制易损性曲线,用Probit模型表征。该方法对不同结构类型管道的致损程度进行了细化,能分析多情景的易损性,但准确度受统计数据质量的影响较大。 | |
Pineda-Porras等[ | 用单位长度管道所需修复的数目,即修复率(repair rate,RR)表征管道受损情况。该方法简洁高效,但是不同地震强度参数表征的易损性结果差异较大。 | ||
O'Rourke等[ | 通过数据统计分析,利用逻辑回归等方法,建立不同震害强度下储罐不同致损程度的经验易损性曲线。该方法能够直观呈现储罐在不同存储状态下的易损性,但是没有区分锚固和非锚固情况,并且判别致损程度的依据主观性太强。 | ||
Berahman等[ | 根据数据库统计信息,利用Bayesian参数评估技术,建立设备地震易损性计算模型。该方法在极限状态方程中同时考虑了统计和模型的不确定性问题,准确度较高,但是模型复杂,需要大量的数学计算。 | ||
Salzano等[ | 通过数据统计,确定参数分布规律,利用Probit模型表征储罐的致损概率。该方法简单易行,但是模型的系数与统计数据数量和质量直接相关,不同学者统计得出的易损性曲线存在一定差异。 | ||
孙建刚等[ | 考虑结构和地震荷载的随机性,用设备可靠性的方法,结合串联可靠性表达式,分析储罐易损性。该方法从储罐的多种失效模式进行易损性研究,科学性更强,准确度较高。 | ||
洪水、海啸 | Landucci等[ | 建立简化力学模型,用最大水深和最大流速两个参数表征洪水或海啸的强度,考虑常压立式储罐和卧式储罐参数特性,推导失效概率方程。该方法从力学的角度建立极限状态方程,适用于非锚固储罐的分析,但是没有考虑不同的失效模式,并且需要确定的变量参数多。 | 常压立式储罐: 卧罐: |
Basco等[ | 建立力学模型,根据碎片和材料特性分析设备受碎块冲击的失效概率。该方法对碎块进行了极大简化,没有考虑碎块形状的影响,与实际场景存在较大差异,精确度不高。 | ||
Khakzad等[ | 根据储罐浮离、壳壁屈曲、滑移3种失效模式的力学模型,通过逻辑回归方法分析洪水易损性,利用贝叶斯网络对各类失效模式进行组合。该方法适用于大型常压非锚固储罐的分析,逻辑回归的方法考虑了共因失效和条件相关性,分析结果准确度高,科学性强,但是模型复杂,计算量大。 | ||
雷击 | Necci等[ | 基于电弧侵蚀模型(Arc Erosion Modeling),依据峰值电流强度和雷击电荷两个参数的概率分布函数,计算设备雷击后的损伤概率。该方法能够快速计算致损概率,但是没有考虑各类防雷设施的作用,评价的结果会高于实际场景。 | |
火山喷发 | Milazzo等[ | 根据阿基米德原理(Archimedes Principle)与欧拉方法(Eulers Method)建立火山灰与外浮顶罐之间的力学关系,推导罐顶下沉与倾覆的极限状态方程。该模型简洁高效,但在实际应用中,还有更多的参数需要考虑,包括火山喷发的频率和强度、风向、目标储罐与火山口的距离等。 | 浮顶罐罐顶倾覆(浮顶保持稳定的条件为zM>zB): |
Milazzo等[ | 类比填料塔中压降的原理,推导火山灰导致过滤系统压降的计算公式,得出计算过滤系统失效时间和火山灰浓度超越概率曲线的方法。该方法假定火山灰浓度是定值,忽略了复杂气象条件的影响,评价结果误差较大。 |
表2 自然灾害设备易损性模型
灾种 | 来源 | 易损性分析方法及其适用性、准确度、优缺点 | 致损概率(参数)表征 |
---|---|---|---|
地震 | Lanzano等[ | 通过数据统计分析,确定峰值地面加速度PGA与埋地管道泄漏频率关系,绘制易损性曲线,用Probit模型表征。该方法对不同结构类型管道的致损程度进行了细化,能分析多情景的易损性,但准确度受统计数据质量的影响较大。 | |
Pineda-Porras等[ | 用单位长度管道所需修复的数目,即修复率(repair rate,RR)表征管道受损情况。该方法简洁高效,但是不同地震强度参数表征的易损性结果差异较大。 | ||
O'Rourke等[ | 通过数据统计分析,利用逻辑回归等方法,建立不同震害强度下储罐不同致损程度的经验易损性曲线。该方法能够直观呈现储罐在不同存储状态下的易损性,但是没有区分锚固和非锚固情况,并且判别致损程度的依据主观性太强。 | ||
Berahman等[ | 根据数据库统计信息,利用Bayesian参数评估技术,建立设备地震易损性计算模型。该方法在极限状态方程中同时考虑了统计和模型的不确定性问题,准确度较高,但是模型复杂,需要大量的数学计算。 | ||
Salzano等[ | 通过数据统计,确定参数分布规律,利用Probit模型表征储罐的致损概率。该方法简单易行,但是模型的系数与统计数据数量和质量直接相关,不同学者统计得出的易损性曲线存在一定差异。 | ||
孙建刚等[ | 考虑结构和地震荷载的随机性,用设备可靠性的方法,结合串联可靠性表达式,分析储罐易损性。该方法从储罐的多种失效模式进行易损性研究,科学性更强,准确度较高。 | ||
洪水、海啸 | Landucci等[ | 建立简化力学模型,用最大水深和最大流速两个参数表征洪水或海啸的强度,考虑常压立式储罐和卧式储罐参数特性,推导失效概率方程。该方法从力学的角度建立极限状态方程,适用于非锚固储罐的分析,但是没有考虑不同的失效模式,并且需要确定的变量参数多。 | 常压立式储罐: 卧罐: |
Basco等[ | 建立力学模型,根据碎片和材料特性分析设备受碎块冲击的失效概率。该方法对碎块进行了极大简化,没有考虑碎块形状的影响,与实际场景存在较大差异,精确度不高。 | ||
Khakzad等[ | 根据储罐浮离、壳壁屈曲、滑移3种失效模式的力学模型,通过逻辑回归方法分析洪水易损性,利用贝叶斯网络对各类失效模式进行组合。该方法适用于大型常压非锚固储罐的分析,逻辑回归的方法考虑了共因失效和条件相关性,分析结果准确度高,科学性强,但是模型复杂,计算量大。 | ||
雷击 | Necci等[ | 基于电弧侵蚀模型(Arc Erosion Modeling),依据峰值电流强度和雷击电荷两个参数的概率分布函数,计算设备雷击后的损伤概率。该方法能够快速计算致损概率,但是没有考虑各类防雷设施的作用,评价的结果会高于实际场景。 | |
火山喷发 | Milazzo等[ | 根据阿基米德原理(Archimedes Principle)与欧拉方法(Eulers Method)建立火山灰与外浮顶罐之间的力学关系,推导罐顶下沉与倾覆的极限状态方程。该模型简洁高效,但在实际应用中,还有更多的参数需要考虑,包括火山喷发的频率和强度、风向、目标储罐与火山口的距离等。 | 浮顶罐罐顶倾覆(浮顶保持稳定的条件为zM>zB): |
Milazzo等[ | 类比填料塔中压降的原理,推导火山灰导致过滤系统压降的计算公式,得出计算过滤系统失效时间和火山灰浓度超越概率曲线的方法。该方法假定火山灰浓度是定值,忽略了复杂气象条件的影响,评价结果误差较大。 |
1 | MORINOY, OHARAT, NISHIZAWAM. Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011 [J]. Geophysical Research Letters, 2011, 38(7): 136-147. |
2 | CRUZA M, KRAUSMANNE. Hazardous-materials releases from offshore oil and gas facilities and emergency response following Hurricanes Katrina and Rita [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1): 59-65. |
3 | STEINBERGL J, CRUZA M. When natural and technological disasters collide: lessons from the Turkey earthquake of August 17, 1999 [J]. Natural Hazards Review, 2004, 5(3): 121-130. |
4 | SHOWALTERP S, MYERSM F. Natural disasters as the cause of technological emergencies: a review of the decade 1980-1989 [D]. Boulder,Colorado: University of Colorado Boulder, 1992. |
5 | MENONIS, PERGALANIF. An attempt to link risk assessment with land use planning: a recent experience in Italy [J]. Disaster Prevention and Management: an International Journal, 1996, 5(1): 6-21. |
6 | COZZANIV, CAMPEDELM, RENNIE, et al. Industrial accidents triggered by flood events: analysis of past accidents [J]. Journal of Hazardous Materials, 2010, 175(1): 501-509. |
7 | KRAUSMANNE, COZZANIV, SALZANOE, et al. Industrial accidents triggered by natural hazards: an emerging risk issue [J]. Natural Hazards & Earth System Sciences, 2011, 11(3): 921-929. |
8 | KRAUSMANNE, RENNIE, CAMPEDELM, et al. Industrial accidents triggered by earthquakes, floods and lightning: lessons learned from a database analysis [J]. Natural Hazards, 2011, 59(1): 285-300. |
9 | RENNIE, KRAUSMANNE, COZZANIV. Industrial accidents triggered by lightning [J]. Journal of Hazardous Materials, 2010, 184(1/2/3): 42-48. |
10 | YOUNGS, BALLUZL, MALILAYJ. Natural and technologic hazardous material releases during and after natural disasters: a review [J]. Science of the Total Environment, 2004, 322(1): 3-20. |
11 | NASCIMENTOK R D S, ALENCARM H. Management of risks in natural disasters: a systematic review of the literature on NaTech events [J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 347-359. |
12 | NADERPOURM, KHAKZADN. Texas LPG fire: Domino effects triggered by natural hazards [J]. Process Safety & Environmental Protection, 2018, 116: 354-364. |
13 | European Parliament and Council. Seveso-Ⅲ (Directive2012/18/EU) [EB/OL]. [2019-03-07]. https: //eur-lex. europa. eu/search. html?qid=1551945944158 & text=2012/18 |
/EU & scope=EURLEX&type=quick&lang=en. | |
14 | KRAUSMANNE, BARANZINID. NaTech risk reduction in the European Union [J]. Journal of Risk Research, 2012, 15(8): 1027-1047. |
15 | KUMASAKIM, HARAT, NAKAJIMAN, et al. The classification of physical effects from natural hazards for Na-Tech risk assessment based on a Japanese database [J]. Journal of Loss Prevention in the Process Industries, 2017, 50: 308-316. |
16 | DOLCEM, BUCCID. Comparing recent Italian earthquakes [J]. Bulletin of Earthquake Engineering, 2015, 15(2): 1-37. |
17 | KRAUSMANNE, MUSHTAQF. A qualitative Na-Tech damage scale for the impact of floods on selected industrial facilities [J]. Natural Hazards, 2008, 46(2): 179-197. |
18 | European Commission Joint Research Centre. NATECH accident database [EB/OL]. [2019-03-07]. http: //enatech. jrc. ec. europa. eu. |
19 | SENGULH. Hazard characterization of joint natural and technological disasters (NaTechs) in the United States using federal databases [D]. Louisiana: Tulane University, 2005. |
20 | CAMPEDELM. Analysis of major industrial accidents triggered by natural events reported in the principal available chemical accident databases [R]. Luxembourg: European Commission, 2007. |
21 | KRAUSMANNE, BARANZINID. Na-Tech risk reduction in OECD Member Countries: results of a questionnaire survey [R]. Luxembourg: European Communities, 2009. |
22 | CHANGJ I, LINC. A study of storage tank accidents [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(1): 51-59. |
23 | ARGYROPOULOSC D, CHRISTOLISM N, NIVOLIANITOUZ, et al. A hazards assessment methodology for large liquid hydrocarbon fuel tanks [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(2): 329-33 |
24 | RASMUSSENK. Natural events and accidents with hazardous materials [J]. Journal of Hazardous Materials, 1995, 40(1): 43-54. |
25 | ANTONIONIG, SPADONIG, COZZANIV. A methodology for the quantitative risk assessment of major accidents triggered by seismic events [J]. Journal of Hazardous Materials, 2007, 147(1/2): 48-59. |
26 | ANTONIONIG, BONVICINIS, SPADONIG, et al. Development of a framework for the risk assessment of Na-Tech accidental events [J]. Reliability Engineering & System Safety, 2009, 94(9): 1442-1450. |
27 | KRAUSMANNE, CRUZA M, AFFELTRANGERB. The impact of the 12 May 2008 Wenchuan earthquake on industrial facilities [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(2): 242-248. |
28 | CAMPEDELM, COZZANIV, KRAUSMANNE, et al. Analysis of Natech accidents recorded in major accident databases [C]// 9th International Conference on Probabilistic Safety Assessment and Management. Hongkong, China: PSAM9, 2008: 1-18. |
29 | GODOYL A. Performance of storage tanks in oil facilities damaged by hurricanes Katrina and Rita [J]. Journal of Performance of Constructed Facilities, 2007, 21(6): 441-449. |
30 | CRUZA M, KRAUSMANNE. Damage to offshore oil and gas facilities following hurricanes Katrina and Rita: an overview [J]. Journal of Loss Prevention in the Process Industries, 2008, 21(6): 620-626. |
31 | KRAUSMANNE, CRUZA M. Impact of the 11 March 2011, Great East Japan earthquake and tsunami on the chemical industry [J]. Natural Hazards, 2013, 67(2): 811-828. |
32 | WUDongying, CHENZhen. Quantitative risk assessment of fire accidents of large-scale oil tanks triggered by lightning [J]. Engineering Failure Analysis, 2016, 63: 172-181. |
33 | GIRGINS, KRAUSMANNE. Historical analysis of U. S. onshore hazardous liquid pipeline accidents triggered by natural hazards [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 578-590. |
34 | YANGYunfeng, CHENGuohua, CHENPeizhu. The probability prediction method of Domino effect triggered by lightning in chemical tank farm [J]. Process Safety & Environmental Protection, 2018, 116: 106-114. |
35 | MENGYaobin, LUChao, YANYongjie, et al. Method to analyze the regional life loss risk by airborne chemicals released after devastating earthquakes: a simulation approach [J]. Process Safety & Environmental Protection, 2014, 94: 366-379. |
36 | 陈国华, 邹梦婷. 化工园区多灾种耦合关系模型及断链减灾模式[J]. 化工进展, 2018, 37(8): 3271-3279. |
CHENGuohua, ZOUMengting. Coupling relationship model of multi-hazard and pattern of chain-cutting disaster mitigation in Chemical Industry Park [J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3271-3279. | |
37 | 范海军, 肖盛燮, 郝艳广, 等. 自然灾害链式效应结构关系及其复杂性规律研究[J]. 岩石力学与工程学报, 2006, 25(s1): 2603-2611. |
FANHaijun, XIAOShengxie, HAOYanguang, et al. Study on structural relation of chain effects on natural disaster and its complexity [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(s1): 2603-2611. | |
38 | 贾梅生, 陈国华, 胡昆, 等. 化工园区多米诺事故风险评价与防控技术综述[J]. 化工进展, 2017, 36(4): 1534-1543. |
JIAMeisheng, CHENGuohua, HUKun, et al. Review of risk assessment and pre-control of Domino effect in Chemical Industry Park [J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1534-1543. | |
39 | COZZANIV, GUBINELLIG, ANTONIONIG, et al. The assessment of risk caused by Domino effect in quantitative area risk analysis [J]. Journal of Hazardous Materials, 2005, 127(1): 14-30. |
40 | HOEHLERM S, SMITHC M, HUTCHINSONT C, et al. Behavior of steel-sheathed shear walls subjected to seismic and fire loads [J]. Fire Safety Journal, 2017, 91: 524-531. |
41 | CHENChao, RENIERSG, ZHANGLaobing. An innovative methodology for quickly modeling the spatial-temporal evolution of Domino accidents triggered by fire [J]. Journal of Loss Prevention in the Process Industries, 2018, 54: 312-324. |
42 | RENIERSG, LERBERGHE PVAN, GULIJK CVAN. Security risk assessment and protection in the chemical and process industry [J]. Process Safety Progress, 2015, 34(1): 72-83. |
43 | COZZANIV, ANTONIONIG, LANDUCCIG, et al. Quantitative assessment of Domino and NaTech scenarios in complex industrial areas [J]. Journal of Loss Prevention in the Process Industries, 2014, 28(28): 10-22. |
44 | FABBROCINOG, IERVOLINOI, ORLANDOF, et al. Quantitative risk analysis of oil storage facilities in seismic areas [J]. Journal of Hazardous Materials, 2005, 123(1/2/3): 61-69. |
45 | CAMPEDELM, COZZANIV, GARCIA-AGREDAA, et al. Extending the quantitative assessment of industrial risks to earthquake effects [J]. Risk Analysis, 2010, 28(5): 1231-1246. |
46 | GHEORGHIUA D, TÖRÖKZ, OZUNUA, et al. Comparative analysis of technological and Natech risk for two petroleum product tanks located in seismic area [J]. Environmental Engineering & Management Journal, 2014, 13(8): 1887-1892. |
47 | LANDUCCIG, NECCIA, ANTONIONIG, et al. Release of hazardous substances in flood events: damage model for horizontal cylindrical vessels [J]. Reliability Engineering & System Safety, 2014, 132(132): 125-145. |
48 | LANDUCCIG, ANTONIONIG, TUGNOLIA, et al. Release of hazardous substances in flood events: damage model for atmospheric storage tanks [J]. Reliability Engineering & System Safety, 2012, 106: 200-216. |
49 | ANTONIONIG, LANDUCCIG, NECCIA, et al. Quantitative assessment of risk due to NaTech scenarios caused by floods [J]. Reliability Engineering & System Safety, 2015, 142: 334-345. |
50 | NECCIA, ANTONIONIG, COZZANIV, et al. Assessment of lightning impact frequency for process equipment [J]. Reliability Engineering & System Safety, 2014, 130: 95-105. |
51 | NECCIA, ANTONIONIG, COZZANIV. Quantification of risk reduction due to the installation of different lightning protection solutions for large atmospheric storage tanks [J]. Chemical Engineering Transactions, 2014, 36: 481-486. |
52 | NECCIA, ARGENTIF, LANDUCCIG, et al. Accident scenarios triggered by lightning strike on atmospheric storage tanks [J]. Reliability Engineering & System Safety, 2014, 127(127): 30-46. |
53 | NECCIA, ANTONIONIG, BONVICINIS, et al. Quantitative assessment of risk due to major accidents triggered by lightning [J]. Reliability Engineering & System Safety, 2016, 154: 60-72. |
54 | SALZANOE. A GIS-based tool for the management of industrial accidents triggered by volcanic ash fallouts [J]. Journal of Risk Research, 2016, 19(2): 212-232. |
55 | CRUZA M, KRAUSMANNE. Vulnerability of the oil and gas sector to climate change and extreme weather events [J]. Climatic Change, 2013, 121(1): 41-53. |
56 | CAOQingshuai, ZHAOYang, ZHANGRu. Wind induced buckling of large circular steel silos with various slenderness [J]. Thin-Walled Structures, 2018, 130: 101-113. |
57 | PHANH N, PAOLACCIF, BURSIO S, et al. Seismic fragility analysis of elevated steel storage tanks supported by reinforced concrete columns [J]. Journal of Loss Prevention in the Process Industries, 2017, 47: 57-65. |
58 | O'ROURKEM J, SO P. Seismic fragility curves for on-grade steel tanks [J]. Earthquake Spectra, 2000, 16(4): 801-815. |
59 | American Lifelines Alliance. Seismic fragility formulations for water systems: Part I, Guideline [R]. Washington: ALA, 2001. |
60 | American Lifelines Alliance. Seismic fragility formulations for water systems. Part Ⅱ, Appendices [R]. Washington: ALA, 2001. |
61 | LANZANOG, SALZANOE, MAGISTRISF S D, et al. Seismic vulnerability of gas and liquid buried pipelines [J]. Journal of Loss Prevention in the Process Industries, 2014, 28(6): 72-78. |
62 | PINEDA-PORRASO, NAJAFIM. Seismic damage estimation for buried pipelines: challenges after three decades of progress [J]. Journal of Pipeline Systems Engineering & Practice, 2009, 1(1): 19-24. |
63 | BERAHMANF, BEHNAMFARF. Seismic fragility curves for un-anchored on-grade steel storage tanks: Bayesian approach [J]. Journal of Earthquake Engineering, 2007, 11(2): 166-192. |
64 | SALZANOE, IERVOLINOI, FABBROCINOG. Seismic risk of atmospheric storage tanks in the framework of quantitative risk analysis [J]. Journal of Loss Prevention in the Process Industries, 2003, 16(5): 4 03-409. |
65 | 孙建刚, 张荣花, 张亮. 基于概率估计方法的立式储罐地震易损性研究[J]. 世界地震工程, 2009, 25(1): 37-42. |
SUNJiangang, ZHANGRonghua, ZHANGLiang. Investigation on seismic vulnerability of vertical storage tanks based on probability estimate method [J]. World Earthquake Engineering, 2009, 25(1): 37-42. | |
66 | LANDUCCIG, NECCIA, TUGNOLIA, et al. NaTech scenarios caused by flooding: evaluation of accident frequency by the use of fragility models [J]. Chemical Engineering Transactions, 2014, 36: 427-432. |
67 | BASCOA, SALZANOE. The vulnerability of industrial equipment to tsunami [J]. Journal of Loss Prevention in the Process Industries, 2016, 50: 301-307. |
68 | KHAKZADN, GELDERP V. Fragility assessment of chemical storage tanks subject to floods [J]. Process Safety & Environmental Protection, 2017, 111: 75-84. |
69 | NECCIA, ANTONIONIG, COZZANIV, et al. A model for process equipment damage probability assessment due to lightning [J]. Reliability Engineering & System Safety, 2013, 115(7): 91-99. |
70 | MILAZZOM F, ANCIONEG, BASCOA, et al. Potential loading damage to industrial storage tanks due to volcanic ash fallout [J]. Natural Hazards, 2013, 66(2): 939-953. |
71 | MILAZZOM F, ANCIONEG, SALZANOE, et al. Risks associated with volcanic ash fallout from Mt. Etna with reference to industrial filtration systems [J]. Reliability Engineering & System Safety, 2013, 120(12): 106-110. |
72 | ZHANGXinmei, CHENChen. Mechanism analysis and risk assessment of escalation scenario in chemical industry zones [J]. Process Safety & Environmental Protection, 2013, 91(1/2): 79-85. |
73 | 贾梅生. 过程设备火灾易损性理论与多米诺效应防控[D]. 广州: 华南理工大学, 2017.JIA Meisheng. Vulnerability theory for process equipment exposed to fire and pre-control of Domino effect [D]. Guangzhou: South China University of Technology, 2017. |
74 | ZHANGMingguang, JIANGJuncheng. An improved probit method for assessment of Domino effect to chemical process equipment caused by overpressure [J]. Journal of Hazardous Materials, 2008, 158(2): 280-286. |
75 | HAUPTMANNSU. A Monte-Carlo based procedure for treating the flight of missiles from tank explosions [J]. Probabilistic Engineering Mechanics, 2001, 16(4): 307-312. |
76 | GUBINELLIG, ZANELLIS, COZZANIV. A simplified model for the assessment of the impact probability of fragments [J]. Journal of Hazardous Materials, 2004, 116(3): 175-187. |
77 | CRUZA M, OKADAN. Methodology for preliminary assessment of NaTech risk in urban areas [J]. Natural Hazards, 2008, 46(2): 199-220. |
78 | BUSINIV, MARZOE, CALLIONIA, et al. Definition of a short-cut methodology for assessing earthquake-related Na-Tech risk [J]. Journal of Hazardous Materials, 2011, 192(1): 329-339. |
79 | MARZOE, BUSINIV, ROTAR. Definition of a short-cut methodology for assessing the vulnerability of a territory in natural–technological risk estimation [J]. Reliability Engineering & System Safety, 2015, 134: 92-97. |
80 | VERSEVELD H C WVAN, DONGEREN A RVAN, PLANTN G, et al. Modelling multi-hazard hurricane damages on an urbanized coast with a Bayesian network approach [J]. Coastal Engineering, 2015, 103: 1-14. |
81 | 刘爱华. 城市灾害链动力学演变模型与灾害链风险评估方法的研究[D]. 长沙: 中南大学, 2013.LIU Aihua. Research on the dynamics evolution model of urban disaster chain and the risk assessment method of disaster chain [D]. Changsha: Central South University, 2013. |
82 | GIRGINS, KRAUSMANNE. RAPID-N: Rapid NaTech risk assessment and mapping framework [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 949-960. |
83 | BANKSJ C, CAMPJ V, ABKOWITZM D. Adaptation planning for floods: a review of available tools [J]. Natural Hazards, 2014, 70(2): 1327-1337. |
84 | HAUPTMANNSU. A decision-making framework for protecting process plants from flooding based on fault tree analysis [J]. Reliability Engineering & System Safety, 2010, 95(9): 970-980. |
85 | HAJJC E, PIATYSZEKE, TARDYA, et al. Development of generic bow-tie diagrams of accidental scenarios triggered by flooding of industrial facilities (NaTech) [J]. Journal of Loss Prevention in the Process Industries, 2015, 36(1): 72-83. |
86 | LANDUCCIG, ARGENTIF, SPADONIG, et al. Domino effect frequency assessment: the role of safety barriers [J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 706-717. |
87 | GALDERISIA, CEUDECHA, PISTUCCIM. A method for Na-Tech risk assessment as supporting tool for land use planning mitigation strategies [J]. Natural Hazards, 2008, 46(2): 221-241. |
88 | GHEORGHIUA D, TÖRÖKZ, OZUNUA, et al. NaTech risk analysis in the context of land use planning. Case study: petroleum products storage tank farm next to a residential area [J]. Chemical Engineering Transactions, 2014, 36: 439-444. |
89 | 许铭, 吴宗之, 多英全, 等. 基于NSGA-Ⅱ的化工园区无约束双目标安全规划[J]. 高校化学工程学报, 2010, 24(5): 858-864. |
XUMing, WUZongzhi, YingquanDUO, et al. Unconstrained two-objective land-use safety planning for chemical industry park based-on NSGA-Ⅱ [J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(5): 858-864. | |
90 | ZHOUChi, GAOLiang, GAOHaibing. Particle swarm optimization based algorithm for constrained layout optimization [J]. Control & Decision, 2005, 20(1): 36-40. |
91 | JUNGS. Facility siting and plant layout optimization for chemical process safety [J]. Korean Journal of Chemical Engineering, 2016, 33(1): 1-7. |
92 | KHAKZADN, RENIERSG. Using graph theory to analyze the vulnerability of process plants in the context of cascading effects [J]. Reliability Engineering & System Safety, 2015, 143: 63-73. |
93 | 陶飞. 基于鲁棒模型的过程工艺与控制集成设计方法研究[D]. 杭州: 浙江工业大学, 2016.TAO Fei. The integration of process design and control based on robust modeling approach [D]. Hangzhou: Zhejiang University of Technology, 2016. |
94 | Center for Chemical Process Safety (CCPS). Inherently safer chemical processes: a life cycle approach [M]. 2nd ed. New Jersey: Wiley-Blackwell, 2009. |
95 | LANDUCCIG, ARGENTIF, TUGNOLIA, et al. Quantitative assessment of safety barrier performance in the prevention of Domino scenarios triggered by fire [J]. Reliability Engineering & System Safety, 2015, 143: 30-43. |
96 | GIRGINS. The NaTech events during the 17 August 1999 Kocaeli earthquake: aftermath and lessons learned [J]. Natural Hazards & Earth System Sciences, 2011, 11(4): 1129-1140. |
97 | STEINBERGL J, SENGULH, CRUZA M. NaTech risk and management: an assessment of the state of the art [J]. Natural Hazards, 2008, 46(2): 143-152. |
98 | FIELDC B, BARROSV, STOCKERT F, et al. Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the Intergovernmental Panel on Climate Change [J]. Journal of Clinical Endocrinology & Metabolism, 2012, 18(6): 586-599. |
99 | CHAKRABORTYA, IBRAHIMA, CRUZA M. A study of accident investigation methodologies applied to the NaTech events during the 2011 great east Japan earthquake [J]. Journal of Loss Prevention in the Process Industries, 2018, 51: 208-222. |
100 | CURNINS, OWENC, PATOND, et al. A theoretical framework for negotiating the path of emergency management multi-agency coordination [J]. Applied Ergonomics, 2015, 47: 300-307. |
101 | RENIERSG, PAVLOVAY. Using game theory to improve safety within chemical industrial parks [M]. London: Springer, 2013. |
102 | LEE E K, PIETZF H, CHENC H, et al. An interactive web-based decision support system for mass dispensing, emergency preparedness, and biosurveillance [C]// Proceedings of the 2017 International Conference on Digital Health. New York, USA: Association for Computing Machinery, 2017: 137-146. |
[1] | 张婷婷, 左旭乾, 田玲娣, 王世猛. 化工园区挥发性有机物排放清单及因子库构建方法[J]. 化工进展, 2023, 42(S1): 549-557. |
[2] | 赵景斌, 王彦富, 王涛, 马伟恺, 王琛. 基于蒙特卡洛模拟和动态事件树的储罐脆弱性评估[J]. 化工进展, 2023, 42(5): 2751-2759. |
[3] | 陈培珠, 陈国华, 门金坤. 化工园区应急响应阶段应急救援与疏散双向路径规划[J]. 化工进展, 2022, 41(1): 503-512. |
[4] | 陈培珠, 陈国华, 周利兴, 门金坤. 化工园区多Agent协同应急智能决策体系[J]. 化工进展, 2021, 40(8): 4656-4665. |
[5] | 杨挺. 中国化工园区建设管理的“六个一体化”[J]. 化工进展, 2021, 40(10): 5845-5853. |
[6] | 程玉龙, 罗云, 师立晨, 许铭. 化工园区Na-Tech风险定量评价方法[J]. 化工进展, 2019, 38(s1): 282-287. |
[7] | 陈国华, 邹梦婷, 黄孔星, 杨运锋. 化工园区多灾种耦合脆弱性方法探究与前沿综述[J]. 化工进展, 2019, 38(05): 2527-2535. |
[8] | 胡昆, 陈国华, 周志航, 黄孔星. 爆炸冲击波作用下化工设备易损性研究评述[J]. 化工进展, 2019, 38(04): 1634-1645. |
[9] | 陈国华, 邹梦婷. 化工园区多灾种耦合关系模型及断链减灾模式[J]. 化工进展, 2018, 37(08): 3271-3279. |
[10] | 陈国华, 祁帅, 贾梅生, 胡昆. 化工容器碎片引发多米诺效应事故研究历程与展望[J]. 化工进展, 2017, 36(11): 4308-4317. |
[11] | 贾梅生, 陈国华. 火灾环境液化石油气卧罐动态可靠性分析[J]. 化工进展, 2017, 36(09): 3231-3236. |
[12] | 贾梅生, 陈国华. 火灾环境液化石油气卧罐稳定性与静态可靠性分析[J]. 化工进展, 2017, 36(07): 2353-2359. |
[13] | 康德礼, 刘利民, 纪红兵. 化工园区智能化应急救援平台框架构建[J]. 化工进展, 2017, 36(04): 1544-1549. |
[14] | 贾梅生, 陈国华, 胡昆. 化工园区多米诺事故风险评价与防控技术综述[J]. 化工进展, 2017, 36(04): 1534-1543. |
[15] | 夏晨曦, 韩辉, 李伟敏. 基于贝叶斯网络的粉尘爆炸多米诺效应分析[J]. 化工进展, 2016, 35(S2): 110-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |