化工进展 ›› 2019, Vol. 38 ›› Issue (07): 3117-3125.DOI: 10.16085/j.issn.1000-6613.2018-2186
收稿日期:
2018-11-08
出版日期:
2019-07-05
发布日期:
2019-07-05
作者简介:
信作者:柏静儒(1973—),女,博士,教授,研究方向为洁净煤技术。E-mail:<email>jlbjr@163.com</email>。
基金资助:
Jingru BAI(),Jiabin CHEN,Kun LI,Zhichao WANG,Lingzhi JIANG,Qing WANG
Received:
2018-11-08
Online:
2019-07-05
Published:
2019-07-05
摘要:
利用FTIR和13C NMR对印尼油砂沥青中的脂肪烃结构、芳香烃结构、含氧官能团以及碳骨架进行研究,并就印尼油砂样品中较高的硫含量进行XPS分析。结果表明:4个印尼油砂样品沥青中脂肪碳含量均占到了70%左右,脂肪烃主要由亚甲基构成,甲基与次甲基次之,样品中有大量的烷基侧链。FTIR无法准确分辨芳香烃部分的苯环取代结构,通过13C NMR发现芳香烃中质子化芳碳的含量较高,桥头芳碳与侧枝芳碳为主要非质子化芳碳,由带质子化芳碳的比例大小可以推断样品芳香环上的取代度为2~4。样品含氧官能团部分以C-O形式存在于醇和醚中,部分以羧基形式存在。样品中硫主要为有机硫,芳香族硫化物含量最高,其次为脂肪族硫化物,存在一定比例亚砜。无机硫以黄铁矿硫与硫酸盐硫形式存在,由于油砂表面被有机质包裹,无机物裸露较少,XPS没有测得硫酸盐硫,黄铁矿硫的检测值也偏低。
中图分类号:
柏静儒, 陈嘉彬, 李坤, 王智超, 蒋凌志, 王擎. 印尼油砂沥青组成及化学结构分析[J]. 化工进展, 2019, 38(07): 3117-3125.
Jingru BAI, Jiabin CHEN, Kun LI, Zhichao WANG, Lingzhi JIANG, Qing WANG. Analysis of composition and chemical structure of Indonesian oil sands bitumen[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3117-3125.
样品 | 铝甄实验结果 | 索氏抽提实验结果 | ||||
---|---|---|---|---|---|---|
半焦产率 /% | 气体+损失质量分数/% | 焦油产率/% | 水产率/% | 沥青产率 /% | 砂砾产率 /% | |
DL | 74.54 | 3.56 | 20.69 | 1.21 | 32.32 | 66.58 |
KAI | 74,48 | 3.43 | 20.82 | 1.27 | 30.28 | 67.34 |
WK | 73.75 | 3.66 | 21.36 | 1.23 | 30.23 | 67.47 |
WINTO | 72.96 | 4.61 | 21.03 | 1.4 | 29.34 | 69.26 |
表1 油砂样品铝甄实验及抽提实验结果分析
样品 | 铝甄实验结果 | 索氏抽提实验结果 | ||||
---|---|---|---|---|---|---|
半焦产率 /% | 气体+损失质量分数/% | 焦油产率/% | 水产率/% | 沥青产率 /% | 砂砾产率 /% | |
DL | 74.54 | 3.56 | 20.69 | 1.21 | 32.32 | 66.58 |
KAI | 74,48 | 3.43 | 20.82 | 1.27 | 30.28 | 67.34 |
WK | 73.75 | 3.66 | 21.36 | 1.23 | 30.23 | 67.47 |
WINTO | 72.96 | 4.61 | 21.03 | 1.4 | 29.34 | 69.26 |
样品 | 工业分析(质量分数)/% | 元素分析(质量分数)/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
M ad | A ad | V ad | FC ad | CO2 | N | C | H | O | St | |
DL | 0.80 | 47.32 | 25.87 | 0.69 | 25.32 | 0.76 | 80.52 | 9.38 | 1.52 | 3.85 |
WK | 0.86 | 46.15 | 26.51 | 0.51 | 25.97 | 1.01 | 79.07 | 9.14 | 1.41 | 3.66 |
KAI | 0.87 | 45.08 | 29.45 | 0.82 | 23.78 | 0.92 | 79.16 | 9.21 | 1.72 | 3.72 |
WINTO | 0.77 | 47.26 | 27.22 | 0.43 | 24.32 | 1.15 | 79.82 | 8.99 | 1.21 | 5.79 |
表2 油砂样品的工业分析与元素分析
样品 | 工业分析(质量分数)/% | 元素分析(质量分数)/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
M ad | A ad | V ad | FC ad | CO2 | N | C | H | O | St | |
DL | 0.80 | 47.32 | 25.87 | 0.69 | 25.32 | 0.76 | 80.52 | 9.38 | 1.52 | 3.85 |
WK | 0.86 | 46.15 | 26.51 | 0.51 | 25.97 | 1.01 | 79.07 | 9.14 | 1.41 | 3.66 |
KAI | 0.87 | 45.08 | 29.45 | 0.82 | 23.78 | 0.92 | 79.16 | 9.21 | 1.72 | 3.72 |
WINTO | 0.77 | 47.26 | 27.22 | 0.43 | 24.32 | 1.15 | 79.82 | 8.99 | 1.21 | 5.79 |
硫形态 | 沥青形态硫分析 (质量分数)/% | 砂砾形态硫分析 (质量分数)/% | ||||||
---|---|---|---|---|---|---|---|---|
DL | KAI | WK | WINTO | DL | KAI | WK | WINTO | |
全硫 | 3.85 | 3.66 | 3.72 | 5.79 | 0.68 | 0.58 | 0.58 | 0.4 |
硫酸盐硫 | — | — | — | — | 0.36 | 0.26 | 0.27 | 0.31 |
黄铁矿硫 | — | — | — | — | 0.32 | 0.32 | 0.31 | 0.33 |
有机硫 | 3.85 | 3.66 | 3.72 | 5.79 | — | — | — | — |
表3 沥青与砂砾的形态硫分析
硫形态 | 沥青形态硫分析 (质量分数)/% | 砂砾形态硫分析 (质量分数)/% | ||||||
---|---|---|---|---|---|---|---|---|
DL | KAI | WK | WINTO | DL | KAI | WK | WINTO | |
全硫 | 3.85 | 3.66 | 3.72 | 5.79 | 0.68 | 0.58 | 0.58 | 0.4 |
硫酸盐硫 | — | — | — | — | 0.36 | 0.26 | 0.27 | 0.31 |
黄铁矿硫 | — | — | — | — | 0.32 | 0.32 | 0.31 | 0.33 |
有机硫 | 3.85 | 3.66 | 3.72 | 5.79 | — | — | — | — |
峰位置/cm-1 | 吸收峰归属 | 相对含量/% | |||
---|---|---|---|---|---|
DL | WK | KAI | WINTO | ||
2840~2860 | syn.R2CH2 | 24.94 | 24.86 | 25.03 | 24.78 |
2890~2910 | -R3CH | 16.41 | 16.39 | 16.54 | 16.51 |
2920~2930 | asym.R2CH2 | 39.59 | 39.62 | 39.56 | 40.2 |
2955~2965 | asym.RCH3 | 19.06 | 19.13 | 18.87 | 18.51 |
表4 沥青中脂肪烃FTIR吸收峰及归属
峰位置/cm-1 | 吸收峰归属 | 相对含量/% | |||
---|---|---|---|---|---|
DL | WK | KAI | WINTO | ||
2840~2860 | syn.R2CH2 | 24.94 | 24.86 | 25.03 | 24.78 |
2890~2910 | -R3CH | 16.41 | 16.39 | 16.54 | 16.51 |
2920~2930 | asym.R2CH2 | 39.59 | 39.62 | 39.56 | 40.2 |
2955~2965 | asym.RCH3 | 19.06 | 19.13 | 18.87 | 18.51 |
峰位置/cm-1 | 吸收峰归属 | 相对含量/% | |||
---|---|---|---|---|---|
DL | WK | KAI | WINTO | ||
710~730 | 脂肪族亚甲基链(链长大于4) | — | — | — | — |
740~800 | 苯环二取代芳烃 苯环三取代芳烃 | 6.71 | 11.03 | 11.83 | 4.82 |
850~900 | 苯环二取代芳烃 苯环三取代芳烃 苯环四取代芳烃 苯环五取代芳烃 | 93.29 | 88.97 | 88.17 | 95.18 |
表5 沥青中芳香烃FTIR吸收峰及归属
峰位置/cm-1 | 吸收峰归属 | 相对含量/% | |||
---|---|---|---|---|---|
DL | WK | KAI | WINTO | ||
710~730 | 脂肪族亚甲基链(链长大于4) | — | — | — | — |
740~800 | 苯环二取代芳烃 苯环三取代芳烃 | 6.71 | 11.03 | 11.83 | 4.82 |
850~900 | 苯环二取代芳烃 苯环三取代芳烃 苯环四取代芳烃 苯环五取代芳烃 | 93.29 | 88.97 | 88.17 | 95.18 |
峰位置/cm-1 | 吸收峰归属 | 相对含量/% | |||
---|---|---|---|---|---|
DL | WK | KAI | WINTO | ||
1100~1260 | C-O | 51.93 | 39.96 | 49.11 | 42.43 |
1300~1350 | R-COOH | 45.16 | 54.73 | 49.3 | 49.46 |
1350~1500 | -CH2-,-CH3 | — | — | — | — |
1690~1800 | -C | 2.91 | 5.31 | 1.59 | 8.11 |
表6 沥青中含氧官能团FTIR吸收峰及归属
峰位置/cm-1 | 吸收峰归属 | 相对含量/% | |||
---|---|---|---|---|---|
DL | WK | KAI | WINTO | ||
1100~1260 | C-O | 51.93 | 39.96 | 49.11 | 42.43 |
1300~1350 | R-COOH | 45.16 | 54.73 | 49.3 | 49.46 |
1350~1500 | -CH2-,-CH3 | — | — | — | — |
1690~1800 | -C | 2.91 | 5.31 | 1.59 | 8.11 |
化学 位移δ | 归属 | 结构 | 相对含量/% | |||
---|---|---|---|---|---|---|
DL | WK | KAI | WINTO | |||
14~16 | 甲基碳 | R—CH3 | 10.37 | 8.37 | 12.41 | 16.87 |
22~36 | 亚甲基碳 | —CH2 | 49.1 | 47.91 | 46.75 | 45.98 |
36~50 | 次甲基碳、季碳 | —CH —C | 10.13 | 9.83 | 9.97 | 8.73 |
100~129 | 质子化芳碳 | 18.95 | 15.25 | 16.81 | 18.24 | |
129~137 | 桥头芳碳 | 6.85 | 4.22 | 5.32 | 4.66 | |
137~148 | 侧枝芳香碳 | 3.54 | 12.15 | 7.72 | 4.31 | |
165~188 | 羧基碳 | R-COOH | 1.06 | 2.27 | 1.02 | 1.21 |
表7 印尼油砂脂肪烃与芳香烃部分化学位移及归属
化学 位移δ | 归属 | 结构 | 相对含量/% | |||
---|---|---|---|---|---|---|
DL | WK | KAI | WINTO | |||
14~16 | 甲基碳 | R—CH3 | 10.37 | 8.37 | 12.41 | 16.87 |
22~36 | 亚甲基碳 | —CH2 | 49.1 | 47.91 | 46.75 | 45.98 |
36~50 | 次甲基碳、季碳 | —CH —C | 10.13 | 9.83 | 9.97 | 8.73 |
100~129 | 质子化芳碳 | 18.95 | 15.25 | 16.81 | 18.24 | |
129~137 | 桥头芳碳 | 6.85 | 4.22 | 5.32 | 4.66 | |
137~148 | 侧枝芳香碳 | 3.54 | 12.15 | 7.72 | 4.31 | |
165~188 | 羧基碳 | R-COOH | 1.06 | 2.27 | 1.02 | 1.21 |
1 | 贾春霞, 刘洪鹏, 柏静儒, 等 . 油砂燃烧过程的TG-DSC分析[J]. 化工进展, 2013, 32(6): 1273-1277. |
JIA Chunxia , LIU Hongpeng , BAI Jingru , et al . TG-DSC analysis of oil sands combustion process [J]. Chemical Industry and Engineering Progress, 2013, 32(6): 1273-1277. | |
2 | 何林, 孙文郡, 李鑫钢 . 溶剂萃取在油砂分离中的应用及发展[J]. 化工进展, 2011, 30(s2): 186-189. |
HE Lin , SUN Wenjun , LI Xingang . Application and development of solvent extraction in oil sand separation [J]. Chemical Industry and Engineering Progress, 2011, 30(s2): 186-189. | |
3 | 韦石 . 我国成为第二大石油消费国[J]. 复杂油气藏, 2012, 5(4): 8. |
WEI Shi . China became the second largest consumer of oil [J]. Complex Hydrocarbon Reservoirs, 2012, 5(4): 8. | |
4 | 刘增洁 . 未来20年世界能源供需预测[J]. 中国能源, 2002(5): 33-35. |
LIU Zengjie . Forecast of world energy supply and demand over the next 20 years [J]. Energy of China, 2002(5): 33-35. | |
5 | 王擎, 王引, 贾春霞 . 三种印尼油砂燃烧特性研究[J]. 中国电机工程学报, 2012, 32(26): 23-30. |
WANG Qing , WANG Yin , JIA Chunxia . Study on the combustion characteristics of three Indonesian oil sands [J]. Proceedings of the CSEE, 2012, 32(26): 23-30. | |
6 | 李莉 . 油砂——一种新的替代能源[J]. 当代石油石化, 2005, 13(12): 28-30. |
LI Li . Oil sands — a new alternative energy source[J]. Petroleum & Petrochemical Today, 2005, 13(12): 28-30. | |
7 | 王擎, 戈建新, 贾春霞, 等 . 干馏终温对油砂油化学结构的影响[J]. 化工学报, 2013, 64(11): 4216-4222. |
WANG Qing , GE Jianxin , JIA Chunxia , et al . Effect of final retorting temperature on chemical structure of oil sands [J]. CIESC Journal, 2013, 64(11): 4216-4222. | |
8 | TONG Jianhui , HAN Xiangxin , WANG Sha , et al . Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques(solid-state 13C NMR, XPS, FT-IR, and XRD)[J]. Energy & Fuels, 2011, 25(25): 4006-4013. |
9 | CHEN Yanyan , FURMANN A , MASTALERZ M , et al . Quantitative analysis of shales by KBr-FTIR and micro-FTIR [J]. Fuel, 2014, 116(1): 538-549. |
10 | QIAN Lin , ZHAO Yijun , SUN Shaozeng , et al . Chemical/physical properties of char during devolatilization in inert and reducing conditions [J]. Fuel Processing Technology, 2014, 118(2): 327-334. |
11 | 张安贵, 王刚, 毕研涛, 等 . 内蒙古油砂沥青热转化前后化学结构的变化规律[J]. 石油学报(石油加工), 2011, 27(3): 434-440. |
ZHANG Angui , WANG Gang , BI Yantao , et al . Variation of chemical structure of asphalt from oil sands in Inner Mongolia before and after thermal conversion[J]. Acta Petrolei Sinica, 2011, 27(3): 434-440. | |
12 | 王擎, 王智超, 贾春霞, 等 . 基于固体13C核磁共振技术对油砂沥青质结构的研究[J]. 化工进展, 2014, 33(6):1392-1396. |
WANG Qing , WANG Zhichao , JIA Chunxia , et al . Research on asphaltene structure of oil sands based on solid 13C NMR technology [J]. Chemical Industry and Engineering Progress, 2014, 33(6): 1392-1396. | |
13 | 刘洪鹏, 巩时尚, 贾春霞, 等 . 基于TG和FTIR的印尼油砂微观结构及热解特性实验[J]. 科学技术与工程, 2017, 17(18): 1-8. |
LIU Hongpeng , GONG Shishang , JIA Chunxia , et al . Microstructure and pyrolysis characteristics of Indonesian oil sands based on TG and FTIR[J]. Science Technology and Engineering, 2017, 17(18): 1-8. | |
14 | 王擎, 许祥成, 迟铭书, 等 . 干酪根组成结构及其热解生油特性的红外光谱研究[J]. 燃料化学学报, 2015, 43(10): 1158-1166. |
WANG Qing , XU Xiangcheng , CHI Mingshu , et al . FTIR study on the composition and structure of kerogen and its pyrolysis oil generation characteristics [J]. Journal of Fuel Chemistry and Technology, 2015, 43(10): 1158-1166. | |
15 | KELEMEN S R , GEORGE G N , GORBATY M L . Direct determination and quantification of sulphur forms in heavy petroleum and coals: 1. The X-ray photoelectron spectroscopy (XPS) approach [J]. Fuel, 1990, 69(8): 939-944. |
16 | 葛涛, 张明旭, 马祥梅 . 新阳炼焦煤结构的FTIR和XPS谱学表征[J]. 光谱学与光谱分析, 2017, 37(8): 2406-2411. |
GE Tao , ZHANG Mingxu , Xiangmei MA . FTIR and XPS spectroscopic characterization of coking coal structure in Xinyang [J]. Spectroscopy and Spectral Analysis, 2017, 37(8): 2406-2411. | |
17 | 朱子彬, 朱宏斌, 吴勇强, 等 . 烟煤快速加氢热解的研究[J]. 燃料化学学报, 2001, 29(1):44-48. |
ZHU Zibin , ZHU Hongbin , WU Yongqiang , et al . Study on the rapid hydropyrolysis of bituminous coal [J]. Journal of Fuel Chemistry and Technology, 2001, 29(1): 44-48. | |
18 | 李梅, 杨俊和, 张启锋, 等 . 用XPS研究新西兰高硫煤热解过程中氮、硫官能团的转变规律[J]. 燃料化学学报, 2013, 41(11): 1287-1293. |
LI Mei , YANG Junhe , ZHANG Qifeng , et al . XPS was used to study the transformation of nitrogen and sulfur functional groups during pyrolysis of high sulfur coal in New Zealand [J]. Journal of Fuel Chemistry and Technology, 2013, 41(11): 1287-1293. | |
19 | 罗宽勇, 韩冬云, 李福起, 等 . 印尼油砂沥青的净化工艺[J]. 化工进展, 2016, 35(12): 3885-3890. |
LUO Kuanyong , HAN Dongyun , LI Fuqi , et al . Purification process of oil sand asphalt in Indonesia [J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3885-3890. | |
20 | 韩峰, 张衍国, 蒙爱红, 等 . 云南褐煤结构的FTIR分析[J]. 煤炭学报, 2014, 39(11): 2293-2299. |
HAN Feng , ZHANG Yanguo , MENG Aihong , et al . FTIR analysis of lignite structure in Yunnan [J]. Journal of China Coal Society, 2014, 39(11): 2293-2299. | |
21 | 刘粉荣, 李文, 郭慧卿, 等 . XPS法研究煤表面碳官能团的变化及硫迁移行为[J]. 燃料化学学报, 2011, 39(2): 81-84. |
LIU Fanrong , LI Wen , GUO Huiqing , et al . XPS study on the changes of carbon functional groups and sulfur migration behavior on coal surface [J]. Journal of Fuel Chemistry and Technology, 2011, 39(2): 81-84. | |
22 | 陈丽诗, 王岚岚, 潘铁英, 等 . 固体核磁碳结构参数的修正及其在煤结构分析中的应用[J]. 燃料化学学报, 2017, 45(10): 1153-1163. |
CHEN Lishi , WANG Lanlan , PAN Tieying , et al . Modification of structural parameters of solid nuclear magnetic carbon and its application in coal structural analysis [J]. Journal of Fuel Chemistry and Technology, 2017, 45(10): 1153-1163. | |
23 | 马玲玲, 秦志宏, 张露, 等 . 煤有机硫分析中XPS分峰拟合方法及参数设置[J]. 燃料化学学报, 2014, 42(3): 277-283. |
Lingling MA , QIN Zhihong , ZHANG Lu , et al . XPS peak fitting method and parameter setting for coal organic sulfur analysis [J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 277-283. | |
24 | WANG Qing , LIU Qi , WANG Zhichao , et al . Characterization of organic nitrogen and sulfur in the oil shale kerogens [J]. Fuel Processing Technology, 2017, 160(3): 170-177. |
[1] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[2] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[3] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[4] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[5] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[6] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
[7] | 马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
[8] | 陈昊, 张传浩, 于峰, 范彬彬, 李瑞丰. Y型沸石在异丁醇齐聚反应中的催化性能[J]. 化工进展, 2023, 42(2): 794-802. |
[9] | 于海强, 郭泉忠, 杜克勤, 汪川. 脉冲电沉积PbO2涂层在PEMFC不锈钢双极板上的应用[J]. 化工进展, 2023, 42(2): 917-924. |
[10] | 范思强, 彭绍忠, 彭冲, 胡永康. 废塑料高附加值利用技术研究进展[J]. 化工进展, 2023, 42(2): 1020-1027. |
[11] | 沈天绪, 沈来宏. 基于3kW塔式串行流化床差异燃料的化学链燃烧解析[J]. 化工进展, 2023, 42(1): 138-147. |
[12] | 薛马晨, 杨伯伦, 夏春谷, 朱刚利. 乙醇缩合制高碳醇(C6+醇)多相催化剂研究进展[J]. 化工进展, 2023, 42(1): 194-203. |
[13] | 寇佳伟, 程淑艳, 程芳琴. 类水滑石基催化剂光催化二氧化碳还原研究进展[J]. 化工进展, 2022, 41(S1): 190-198. |
[14] | 高帷韬, 殷屺男, 涂自强, 龚繁, 李阳, 徐宏, 王诚, 毛宗强. 金属有机框架材料中的质子传导及其在质子交换膜中的应用[J]. 化工进展, 2022, 41(S1): 260-268. |
[15] | 肖周荣, 李国柱, 王涖, 张香文, 谷建民, 王德松. 液体碳氢燃料蒸汽重整制氢催化剂研究进展[J]. 化工进展, 2022, 41(S1): 97-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |