化工进展 ›› 2019, Vol. 38 ›› Issue (05): 2329-2338.DOI: 10.16085/j.issn.1000-6613.2018-1390
顾甜1(),高凤雨1,2,唐晓龙1,2(),易红宏1,2,张润草1,王雨禾1
收稿日期:
2018-07-06
修回日期:
2018-11-22
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
唐晓龙
作者简介:
<named-content content-type="corresp-name">顾甜</named-content>(1995—),女,硕士研究生,研究方向为环境污染控制与治理、环境功能材料等。E-mail:<email>gutianzp@163.com</email>。|唐晓龙,教授,博士生导师,研究方向为环境污染控制与治理、环境功能材料等。E-mail:<email>txiaolong@126.com</email>。
基金资助:
Tian GU1(),Fengyu GAO1,2,Xiaolong TANG1,2(),Honghong YI1,2,Runcao ZHANG1,Yuhe WANG1
Received:
2018-07-06
Revised:
2018-11-22
Online:
2019-05-05
Published:
2019-05-05
Contact:
Xiaolong TANG
摘要:
氮氧化物(NO x )是主要的大气污染物之一,对人体健康和生态环境造成了严重危害。低温选择性催化还原(SCR)技术是近年来烟气脱硝领域的主要研究方向。炭基材料具有较大的比表面积、发达的孔隙结构等特点,在SCR脱硝方面被广泛用作催化剂载体。本文综述了炭基材料包括活性炭(焦)、活性炭纤维、碳纳米管、石墨烯及碳包覆负载型催化剂在低温NH3-SCR脱硝领域的研究成果与进展,阐述了表面官能团、反应条件及稀土元素等因素对炭基材料负载型催化剂脱硝性能的影响,并且讨论了炭基材料负载型催化剂的催化反应机理。指出采用多种手段改性催化剂,优化其中低温脱硝性能与稳定性,深入探究催化剂表面反应物种的吸附-活化行为和催化反应路径是炭基材料负载型低温NH3-SCR催化剂研究的重点。
中图分类号:
顾甜, 高凤雨, 唐晓龙, 易红宏, 张润草, 王雨禾. 炭基材料负载型低温NH3-SCR脱硝催化剂的研究进展[J]. 化工进展, 2019, 38(05): 2329-2338.
Tian GU, Fengyu GAO, Xiaolong TANG, Honghong YI, Runcao ZHANG, Yuhe WANG. Research progress on carbon-based material supported catalysts for the selective catalytic reduction of NO x by NH3 at low temperature[J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2329-2338.
催化剂(质量分数) | 制备方法 | 反应条件 | NO转化率/% | 参考 文献 |
---|---|---|---|---|
5% V2O5/ACF | 等体积浸渍法 (500℃/8h) | [NO]=[NH3]=600μL/L,[O2]=5%, Ar to balance,GHSV=2000h-1 | 96(180℃) | [ |
10% Fe2O3/ACF | 浸渍法(300℃/5h) | [NO]=[NH3]=200μL/L,[O2]=10.5%,[H2O]= 8%, N2to balance,Q/W=200mL·min-1·g-1 | 约38(150℃) | [ |
10% Co2O3/ACF | 约38 (150℃) | |||
10% Mn2O3/ACF | 90 (150℃) | |||
9% CeO2/ACF | 浸渍法(350℃/6h) | [NO]=[NH3]=1000μL/L,[O2]=5%, Ar to balance,GHSV=11000h-1 | 93.96(180℃) | [ |
10% CeO2/ACF | 浸渍法(360℃/2h) | [NO]=1000μL/L,[NH3]=1100μL/L,[O2]=5%, N2to balance,GHSV=5000h-1 | 80~90 (200~300℃) | [ |
20% La2O3/ACF | 浸渍法(360℃/2h) | [NO]=1000μL/L,[NH3]=1100μL/L,[O2]=5%, N2to balance,GHSV=5000h-1 | 55~85 (200~300℃) | [ |
12% MnO x -CeO x /ACFN | 等体积浸渍法 (500℃/6h) | [NO]=600μL/L, [NH3]=650μL/L, [O2]=3.6%, N2 to balance, W/F=3mg/(mL·min-1) | 100(100~150℃) | [ |
10% urea-(0.5CeO2-0.5MnO2)/ACF | 浸渍法 (420℃/2h) | [NO]=1000μL/L, [O2]=21%, N2 to balance, GHSV=10000h-1 | 90(30℃) | [ |
1.2% Mn(0.75)-Fe/ACF | 浸渍法 (300℃/0.5h) | [NO]=500μL/L, [NH3]=500μL/L, [O2]=5%, N2 to balance, GHSV= 56000h-1 | 92(200℃) | [ |
10%Ce-2%Fe/ACF | 浸渍法 (300℃/4h) | [NO]=1000μL/L, [NH3]=1080μL/L, [O2]=5%, N2 to balance, GHSV= 5000h-1 | 97(80~120℃) | [ |
表1 ACF负载型SCR催化剂低温活性一览表
催化剂(质量分数) | 制备方法 | 反应条件 | NO转化率/% | 参考 文献 |
---|---|---|---|---|
5% V2O5/ACF | 等体积浸渍法 (500℃/8h) | [NO]=[NH3]=600μL/L,[O2]=5%, Ar to balance,GHSV=2000h-1 | 96(180℃) | [ |
10% Fe2O3/ACF | 浸渍法(300℃/5h) | [NO]=[NH3]=200μL/L,[O2]=10.5%,[H2O]= 8%, N2to balance,Q/W=200mL·min-1·g-1 | 约38(150℃) | [ |
10% Co2O3/ACF | 约38 (150℃) | |||
10% Mn2O3/ACF | 90 (150℃) | |||
9% CeO2/ACF | 浸渍法(350℃/6h) | [NO]=[NH3]=1000μL/L,[O2]=5%, Ar to balance,GHSV=11000h-1 | 93.96(180℃) | [ |
10% CeO2/ACF | 浸渍法(360℃/2h) | [NO]=1000μL/L,[NH3]=1100μL/L,[O2]=5%, N2to balance,GHSV=5000h-1 | 80~90 (200~300℃) | [ |
20% La2O3/ACF | 浸渍法(360℃/2h) | [NO]=1000μL/L,[NH3]=1100μL/L,[O2]=5%, N2to balance,GHSV=5000h-1 | 55~85 (200~300℃) | [ |
12% MnO x -CeO x /ACFN | 等体积浸渍法 (500℃/6h) | [NO]=600μL/L, [NH3]=650μL/L, [O2]=3.6%, N2 to balance, W/F=3mg/(mL·min-1) | 100(100~150℃) | [ |
10% urea-(0.5CeO2-0.5MnO2)/ACF | 浸渍法 (420℃/2h) | [NO]=1000μL/L, [O2]=21%, N2 to balance, GHSV=10000h-1 | 90(30℃) | [ |
1.2% Mn(0.75)-Fe/ACF | 浸渍法 (300℃/0.5h) | [NO]=500μL/L, [NH3]=500μL/L, [O2]=5%, N2 to balance, GHSV= 56000h-1 | 92(200℃) | [ |
10%Ce-2%Fe/ACF | 浸渍法 (300℃/4h) | [NO]=1000μL/L, [NH3]=1080μL/L, [O2]=5%, N2 to balance, GHSV= 5000h-1 | 97(80~120℃) | [ |
1 | FAN Z Y , SHI J W , GAO C , et al . Gd-modified MnO x for the selective catalytic reduction of NO by NH3: the promoting effect of Gd on the catalytic performance and sulfur resistance[J]. Chemical Engineering Journal, 2018, 348: 820-830. |
2 | MARANI D , SILVA R H , DANKEAW A , et al . NO x selective catalytic reduction (SCR) on self-supported V-W-doped TiO2 nanofibers[J]. New Journal of Chemistry, 2017, 41(9): 3466-3472. |
3 | SUN C Z , LIU H , CHEN W , et al . Insights into the Sm/Zr co-doping effects on N2 selectivity and SO2 resistance of a MnO x -TiO2 catalyst for the NH3-SCR reaction[J]. Chemical Engineering Journal, 2018, 347: 27-40. |
4 | 王鲁元, 程星星, 王志强, 等 . 低温催化脱硝技术的研究进展[J]. 化工进展, 2016, 35(7): 2222-2235. |
WANG L Y , CHENG X X , WANG Z Q , et al . Recent research progress in catalytic reduction of NO x at low temperature[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2222-2235. | |
5 | FAN X Y , YANG H S , TIAN W , et al . Catalytic oxidation of chlorobenzene over MnO x /Al2O3-carbon nanotubes composites[J]. Catalysis Letters, 2011, 141(1): 158-162. |
6 | 杨永利, 徐东耀, 晁春艳, 等 . 负载型Mn基低温NH3-SCR脱硝催化剂研究综述[J]. 化工进展, 2016, 35(4): 1094-1100. |
YANG Y L , XU D Y , CHAO C Y , et al . Research advance review on supported Mn-based catalysts at low-temperature selective catalytic reduction of NO x with NH3 [J]. Chemical Industry and Engineering Progress, 2016, 35(4): 1094-1100. | |
7 | 胡宇峰, 薛建明 . 炭基材料低温SCR烟气脱硝催化剂的研究进展[J]. 工业催化, 2017(2): 1-7. |
HU Y F , XU J M . Research advance in carbon based low temperature selective catalytic reduction catalysts for flue gas denitrification[J]. Industrial Catalysis, 2017(2): 1-7. | |
8 | 左嫣然, 易红宏, 唐晓龙, 等 . 酸碱改性对活性焦烧结烟气脱硫性能的影响[J]. 环境工程学报, 2015(7): 3405-3410. |
ZUO Y R , YI H H , TANG X L , et al . Effect of acid and alkali modification on SO2 removal by active coke in sintering flue gas[J]. Chinese Journal of Environmental Engineering, 2015(7): 3405-3410. | |
9 | HUANG Z G , HOU Y Q , ZHU Z Z , et al . Study on the NO reduction by NH3 on a SO4 2-/AC catalyst at low temperature[J]. Catalysis Communications, 2014, 50: 83-86. |
10 | WANG J P , YAN Z , LIU L L , et al . In situ DRIFTS investigation on the SCR of NO with NH3 over V2O5 catalyst supported by activated semi-coke[J]. Applied Surface Science, 2014, 313: 660-669. |
11 | XUE Y Y , LU G Z , GUO Y , et al . Effect of pretreatment method of activated carbon on the catalytic reduction of NO by carbon over CuO[J]. Applied Catalysis B: Environmental, 2008, 79(3): 262-269. |
12 | 胡秋玮, 向晓东, 周志辉, 等 . 改性活性焦低温烧结烟气脱硝实验研究[J]. 工业安全与环保, 2013, 39(5): 20-23. |
HU Q W , XIANG X D , ZHOU Z H , et al . The experimental study of sintering flue gas denitration at low temperature by modified activated coke[J]. Industrial Safety and Environmental Protection, 2013, 39(5): 20-23. | |
13 | TANG X L , HAO J M , YI H H , et al . Low-temperature SCR of NO with NH3 on Mn-based catalysts modified with cerium[J]. Journal of Rare Earths, 2007, 25(s1): 240-243. |
14 | YAN Z , QU Y X , LIU L L , et al . Promotional effect of rare earth-doped manganese oxides supported on activated semi-coke for selective catalytic reduction of NO with NH3 [J]. Environmental Science and Pollution Research, 2017, 24(31): 24473-24484. |
15 | CHEN J Y , ZHU B Z , SUN Y L , et al . Investigation of low-temperature selective catalytic reduction of NO x with ammonia over Mn-modified Fe2O3/AC catalysts[J]. Journal of the Brazilian Chemical Society, 2018, 1(29): 79-87. |
16 | PENG K , ZHOU J C , XU W T , et al . Microwave irradiation-selective catalytic reduction of NO to N2 by activated carbon at low temperature[J]. Energy & Fuels, 2017, 31(7): 7344-7351. |
17 | 郭彦霞, 刘振宇, 刘清雅, 等 . V2O5/AC同时脱硫脱硝催化剂在氨气氛中再生时的碳烧蚀机理[J]. 催化学报, 2007, 28(6): 514-520. |
GUO Y X , LIU Z Y , LIU Q Y , et al . Mechanism of carbon burn-off on V2O5/AC for simultaneous SO2 and NO removal during regeneration in NH3 atmosphere[J]. Chinese Journal of Catalysis, 2007, 28(6): 514-520. | |
18 | YI H H , ZUO Y R , LIU H Y , et al . Study on coadsorption of SO2, NO, and CO2 over copper-supported activated carbon sorbent in different operating conditions[J]. Environmental Progress & Sustainable Energy, 2015, 34(4): 1044-1049. |
19 | ZHU L L , HUANG B C , WANG W H , et al . Low-temperature SCR of NO with NH3 over CeO2 supported on modified activated carbon fibers[J]. Catalysis Communications, 2011, 12(6): 394-398. |
20 | HOU Y Q , HUANG Z G , GUO S J . Effect of SO2 on V2O5/ACF catalysts for NO reduction with NH3 at low temperature[J]. Catalysis Communications, 2009, 10(11): 1538-1541. |
21 | YOSHIKAWA M , YASUTAKE A , MOCHIDA I . Low-temperature selective catalytic reduction of NO x by metal oxides supported on active carbon fibers[J]. Applied Catalysis A: General, 1998, 173(2): 239-245. |
22 | LU P , LI C T , ZHENG G M , et al . Low temperature selective catalytic reduction of NO by activated carbon fiber loading lanthanum oxide and ceria[J]. Applied Catalysis B: Environmental, 2010, 96(1/2): 157-161. |
23 | SHEN B X , LIU T , SHI Z L , et al . Low-temperature selective catalytic reduction of NO with NH3 based on MnO x -CeO x /ACFN [J]. Frontiers of Chemical Engineering in China, 2008, 2(3): 325-329. |
24 | LU P , XING Y , LI C T , et al . A reusable material with high performance for removing NO at room temperature: performance, mechanism and kinetics[J]. Catalysis Science & Technology, 2016, 6(1): 3520-3528. |
25 | 郑玉婴, 徐哲, 张延兵, 等 . Mn-Fe/ACF催化剂低温选择性催化还原NO[J]. 功能材料, 2014, 45(20): 20142-20145. |
ZHENG Y Y , XU Z , ZHANG Y B , et al . Mn-Fe/ACF catalyst for low-temperature selective catalytic reduction of NO[J]. Journal of Functional Materials, 2014, 45(20): 20142-20145. | |
26 | 陈燕, 李彩亭, 曾光明, 等 . Ce-Fe/ACF催化剂低温选择性催化还原NO的研究[J]. 环境工程学报, 2010, 4(3): 625-628. |
CHEN Y , LI C T , ZENG G M , et al . Research of low-temperature selective catalytic reduction for NO by Ce-Fe/ACF catalyst[J]. Chinese Journal of Environmental Engineering, 2010, 4(3): 625-628. | |
27 | ZHENG Y Y , ZHAN H T , FANG Y X , et al . Uniformly dispersed carbon-supported bimetallic ruthenium-platinum electrocatalysts for the methanol oxidation reaction[J]. Journal of Materials Science, 2017, 52(6): 3457-3466. |
28 | ZHANG Y B , XU Z , WANG X , et al . Fabrication of Mn-FeO x /CNTs catalysts for low temperature NO reduction with NH3 [J]. Nano, 2015, 10(4): 1550050. |
29 | WANG L , ZHAO J H , BAI S L , et al . Significant catalytic effects induced by the electronic interactions between carboxyl and hydroxyl group modified carbon nanotube supports and vanadium species for NO reduction with NH3 at low temperature[J]. Chemical Engineering Journal, 2014, 254: 399-409. |
30 | LU X L , ZHENG Y Y , ZHANG Y B , et al . Low-temperature selective catalytic reduction of NO over carbon nanotubes supported MnO2 fabricated by co-precipitation method[J]. Micro & Nano Letters, 2015, 10(11): 666-669. |
31 | FANG C , ZHANG D S , SHI L Y , et al . Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3 [J]. Catal. Sci. Technol., 2013, 3(3): 803-811. |
32 | LI Q , YANG H S , MA Z X, et al . Selective catalytic reduction of NO with NH3 over CuO x -carbonaceous materials[J]. Catalysis Communications, 2012, 17: 8-12. |
33 | ZHANG D S , ZHANG L , FANG C , et al . MnO x -CeO x /CNTs pyridine-thermally prepared via a novel in situ deposition strategy for selective catalytic reduction of NO with NH3 [J]. RSC Advances, 2013, 3(23): 8811-8819. |
34 | ZHANG Y B , ZHENG Y Y , ZOU H Q , et al . One-step synthesis of ternary MnO2-Fe2O3-CeO2-Ce2O3/CNT catalysts for use in low-temperature NO reduction with NH3 [J]. Catalysis Communications, 2015, 71: 46-50. |
35 | CAI S X , HU H , LI H R , et al . Design of multi-shell Fe2O3@MnO x @CNTs for the selective catalytic reduction of NO with NH3: improvement of catalytic activity and SO2 tolerance[J]. Nanoscale, 2016, 8(6): 3588-3598. |
36 | ZHANG L , ZHANG D S , ZHANG J P , et al . Design of meso-TiO2@MnO x -CeO x /CNTs with a core–shell structure as deNOx catalyst: promotion of activity, stability and SO2-tolerance[J]. Nanoscale, 2013, 5(20): 9821-9829. |
37 | HUQ M M, HSIEH C T , HO C Y . Preparation of carbon nanotube-activated carbon hybrid electrodes by electrophoretic deposition for supercapacitor applications[J]. Diamond and Related Materials, 2016, 62: 58-64. |
38 | ZHANG X L , LU Z S , TANG Y N , et al . Depletion NO x made easy by nitrogen doped graphene[J]. Catalysis Letters, 2014, 144(6): 1016-1022. |
39 | 焦金珍, 李时卉, 黄碧纯 . 石墨烯负载MnO x 催化剂的制备及其低温NH3-SCR活性[J]. 物理化学学报, 2015, 31(7): 1383-1390. |
JIAO J Z , LI S H , HUANG B C . Preparation of manganese oxides supported on graphene catalysts and their activity in low-temperature NH3-SCR[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1383-1390. | |
40 | LU X N , SONG C Y , CHANG C C , et al . Manganese oxides supported on TiO2-graphene nanocomposite catalysts for selective catalytic reduction of NO x with NH3 at low temperature[J]. Industrial & Engineering Chemistry Research, 2014, 53(29): 11601-11610. |
41 | LU X N , SONG C Y , JIA S H , et al . Low-temperature selective catalytic reduction of NO x with NH3 over cerium and manganese oxides supported on TiO2-graphene[J]. Chemical Engineering Journal, 2015, 260: 776-784. |
42 | XIAO X , SHENG Z Y , YANG L , et al . Low-temperature selective catalytic reduction of NO x with NH3 over a manganese and cerium oxide/graphene composite prepared by a hydrothermal method[J]. Catalysis Science & Technology, 2016, 6(5): 1507-1514. |
43 | YOU X C , SHENG Z Y , YU D Q , et al . Influence of Mn/Ce ratio on the physicochemical properties and catalytic performance of graphene supported MnO x -CeO2 oxides for NH3-SCR at low temperature[J]. Applied Surface Science, 2017, 423: 845-854. |
44 | TANG X L , LI C L , YI H H , et al . Facile and fast synthesis of novel Mn2CoO4@rGO catalysts for the NH3-SCR of NO x at low temperature[J]. Chemical Engineering Journal, 2018, 333: 467-476. |
45 | OUZZINE M , CIFREDO G A , GATICA J M , et al . Original carbon-based honeycomb monoliths as support of Cu or Mn catalysts for low-temperature SCR of NO: effects of preparation variables[J]. Applied Catalysis A: General, 2008, 342(1/2): 150-158. |
46 | VALDÉS-SOLÍS T , MARBAN G , FUERTES A B . Low-temperature SCR of NO x with NH3 over carbon-ceramic cellular monolith-supported manganese oxides[J]. Catalysis Today, 2001, 69(1/2/3/4): 259-264. |
47 | 安百钢, 黄芬, 李莉香, 等 . 活化和氮掺杂炭层包覆碳纳米管载铂催化剂电催化性能研究[J]. 功能材料, 2013, 17(23): 3435-3438. |
AN B G , HUANG F , LI L X , et al . Electrocatalytical performance of the activated and the nitrogen-doped carbon layer coated carbon nanotubes loaded with platinum[J]. Journal of Functional Materials, 2013, 17(23): 3435-3438. | |
48 | 李海涛, 陈昊然, 张因, 等 . 炭包覆氧化铝负载镍催化剂的制备和表征及其催化加氢性能[J]. 催化学报, 2011, 32(1): 111-117. |
LI H T , CHEN H R , ZHANG Y , et al . Preparation and characterization of carbon-covered alumina supported Ni catalyst and its catalytic performance for hydrogenation[J]. Chinese Journal of Catalysis, 2011, 32(1): 111-117. | |
49 | 胡文渊, 马磊, 张群峰, 等 . 涂覆型介孔炭/蜂窝陶瓷整体式催化剂制备及应用[J]. 化工生产与技术, 2014, 21(2): 22-26. |
HU W Y , MA L, ZHANG Q F , et al . Preparation and application of coated mesoporous carbon/honeycomb ceramic monolithic catalyst[J]. Chemical Production and Technology, 2014, 21(2): 22-26. | |
50 | TANG X L , HAO J M , YI H H , et al . Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts[J]. Catalysis Today, 2007, 126(3/4): 406-411. |
51 | GUO Q Q , JING W , HOU Y Q , et al . On the nature of oxygen groups for NH3-SCR of NO over carbon at low temperatures[J]. Chemical Engineering Journal, 2015, 270: 41-49. |
52 | GUO Q Q , JING W , CHENG S Z , et al . Promoting role of sulfur groups in selective catalytic reduction of NO with NH3 over H2SO4 modified activated carbons[J]. Korean Journal of Chemical Engineering, 2015, 32(11): 2257-2263. |
53 | 韦正乐, 黄碧纯, 黄华存, 等 . CeO2/ACFN低温选择性催化还原烟气中的NO[J]. 化工进展, 2008, 27(3): 412-416. |
WEI Z L , HUANG B C , HUANG H C , et al . Low-temperature selective catalytic reduction of NO on CeO2/ACFN[J]. Chemical Industry and Engineering Progress, 2008, 27(3): 412-416. | |
54 | YANG D Q , ROCHETTE J , SACGER E . Functionalization of multiwalled carbon nanotubes by mild aqueous sonication[J]. The Journal of Physical Chemistry B, 2005, 109(16): 7788-7794. |
55 | SAMOJEDEN B , GRZYBEK T . The influence of the promotion of N-modified activated carbon with iron on NO removal by NH3-SCR (selective catalytic reduction)[J]. Energy, 2016, 116: 1484-1491. |
56 | LIN Y T , LI Y R , XU Z C , et al . Transformation of functional groups in the reduction of NO with NH3 over nitrogen-enriched activated carbons[J]. Fuel, 2018, 223: 312-323. |
57 | 吴海苗, 王晓波, 归柯庭 . 以活性炭为载体的负载型催化剂的SCR脱硝性能[J]. 东南大学学报(自然科学版), 2013, 43(4): 814-818. |
WU H M , WANG X B , GUI K T . Performance of SCR denitration of impregnated catalysts using activated carbon as support[J]. Journal of Southeast University(Natural Science Edition), 2013, 43(4): 814-818. | |
58 | REN S , YANG J , ZHANG T S , et al . Role of cerium in improving NO reduction with NH3 over Mn-Ce/ASC catalyst in low-temperature flue gas[J]. Chemical Engineering Research and Design, 2018, 133: 1-10. |
59 | 刘清雅, 刘振宇, 李成岳 . NH3在选择性催化还原NO过程中的吸附与活化[J]. 催化学报, 2006, 27(7): 636-646. |
LIU Q Y , LIU Z Y , LI C Y . Adsorption and activation of NH3 during selective catalytic reduction of NO by NH3 [J]. Chinese Journal of Catalysis, 2006, 27(7): 636-646. | |
60 | BAI S L , ZHAO J , WANG L , et al . Study of low-temperature selective catalytic reduction of NO by ammonia over carbon-nanotube-supported vanadium[J]. Journal of Fuel Chemistry and Technology, 2009, 37(5): 583-587. |
61 | ZHU Z P , LIU Z Y , NIU H X , et al . Mechanism of SO2 promotion for NO Reduction with NH3 over activated carbon-supported vanadium oxide catalyst[J]. Journal of Catalysis, 2001, 197(1): 6-16. |
62 | 胡明江, 王忠, 祁利巧 . MnO x -CeO2/ACF型催化剂低温去除柴油机NO x 研究[J]. 燃烧科学与技术, 2012, 18(3): 242-247. |
HU M J , WANG Z , QI L Q . Low-temperature NO x removal of diesel engine with MnO x -CeO2/ACF catalyst[J]. Journal of Combustion Science and Technology, 2012, 18(3): 242-247. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 李东泽, 张祥, 田键, 胡攀, 姚杰, 朱林, 卜昌盛, 王昕晔. 基于水泥窑脱硝的碳基还原NO x 研究进展[J]. 化工进展, 2023, 42(9): 4882-4893. |
[14] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[15] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |