化工进展 ›› 2019, Vol. 38 ›› Issue (01): 229-243.DOI: 10.16085/j.issn.1000-6613.2018-1108
收稿日期:
2018-05-29
修回日期:
2018-07-07
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
方向晨
作者简介:
张志智(1978—),男,博士研究生,研究方向为碳一化学。E-mail:<email>zhangzhizhi.fshy@sinopec.com</email>。|方向晨,教授级高级工程师,博士生导师,中国石化大连石油化工研究院院长,研究方向为石油炼制。E-mail:<email>fxc@ecust.edu.cn</email>。
基金资助:
Zhizhi ZHANG1,3(),Mingdong ZHOU2,Jing SUN2,Xiangchen FANG1,3()
Received:
2018-05-29
Revised:
2018-07-07
Online:
2019-01-05
Published:
2019-01-05
Contact:
Xiangchen FANG
摘要:
二氧化碳是一种低毒、不易燃、储量丰富且廉价易得的碳一资源,如何有效利用二氧化碳,将二氧化碳转化为高附加值化工品已成为当今研究热点。从能量利用及经济性角度考虑,将二氧化碳作为羧化试剂与具有高能量的起始原料反应,合成具有较高应用价值的羧酸(酯)或碳酸酯类衍生物是二氧化碳规模化利用的重要途径,目前受到了广泛关注。本文综述了近年来二氧化碳羧基化反应的研究进展,从反应的热力学、反应机理以及催化剂和反应工艺的改进等多个方面探讨了通过二氧化碳羧基化反应制备精细化工品的可行性及应用前景。并对该领域研究所存在的问题和局限性进行了总结。最后对今后的发展方向作了展望,指出二氧化碳化学工业的建立还需依赖基础研究的突破,需要开发高性能、廉价、适用范围广的过渡金属催化剂,实现二氧化碳的有效活化和利用。
中图分类号:
张志智, 周明东, 孙京, 方向晨. 二氧化碳羧基化利用探讨[J]. 化工进展, 2019, 38(01): 229-243.
Zhizhi ZHANG, Mingdong ZHOU, Jing SUN, Xiangchen FANG. Carboxylative utilization of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 229-243.
1 | SAKAKURA T , CHOI J C , YASUDA H . Transformation of carbon dioxide[J]. Chemical Reviews, 2007, 107(6): 2365-2387. |
2 | OMAE I . Recent developments in carbon dioxide utilization for the production of organic chemicals[J]. Coordination Chemistry Reviews, 2012, 256(13-14): 1384-1405. |
3 | 高志文, 肖林飞, 陈静, 等 . 二氧化碳与环氧化合物合成环状碳酸酯的研究进展[J]. 催化学报, 2008, 29(9): 831-838. |
GAO Z W , XIAO L F , CHEN J , et al . Recent advances in the synthesis of cyclic carbonates from carbon dioxide and epoxides[J]. Chinese Journal of Catalysis, 2008, 29(9): 831-838. | |
4 | ROKICKI A , KURAN W . The application or carbon-dioxide as a direct material for polymer syntheses in polymerization and polycondensation reactions[J]. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics, 1981, 100(1): 135-186. |
5 | 方向晨, 张志智, 张喜文 . CO2的化工利用技术展望[J]. 当代化工, 2011, 40(3): 221-231. |
FANG X C , ZHANG Z Z , ZHANG X W . Technology prospects of chemical utilization of CO2 [J]. Contemporary Chemical Industry, 2011, 40(3): 221-231. | |
6 | 靳治良, 钱玲, 吕功煊 . 二氧化碳化学——现状及展望[J]. 化学进展, 2010, 22(6): 1102-1115. |
JIN Z L , QIAN L , LÜ G X . CO2 chemistry—actuality and expectation [J]. Progress in Chemistry, 2010, 22(6): 1102-1115. | |
7 | 孙潇磊, 张志智, 张建, 等 . 二氧化碳和环氧丙烷合成碳酸丙烯酯热力学计算[J]. 当代化工, 2016, 45(7): 1523-1526. |
SUN X L , ZHANG Z Z , ZHANG J , et al . Thermodynamic analysis of the reaction system for synthesizing propylene carbonate from carbon dioxide and propylene oxide[J]. Contemporary Chemical Industry, 2016, 45(7): 1523-1526. | |
8 | 彭家建, 邓友全 . 室温离子液体催化合成碳酸丙烯酯[J]. 催化学报, 2001, 22(6): 994-996. |
PENG J J , DENG Y Q . Formation of propylene carbonate catalyzed by room temperature ion liquids[J]. Chinese Journal of Catalysis, 2001, 22(6): 994-996. | |
9 | LEE E H , AHN J Y , DHARMAN M M , et al . Synthesis of cyclic carbonate from vinyl cyclohexene oxide and CO2 using ionic liquids as catalysts[J]. Catalysis Today, 2008, 131(1/2/3/4): 130-134. |
10 | DU Y , WANG J Q , CHEN J Y , et al . A poly (ethylene glycol)-supported quaternary ammonium salt for highly efficient and environmentally friendly chemical fixation of CO2 with epoxides under supercritical conditions[J]. Tetrahedron Letters, 2006, 47(8): 1271-1275. |
11 | HE L N , YASUDA H , SAKAKURA T . New procedure for recycling homogeneous catalyst: propylene carbonate synthesis under supercritical CO2 conditions[J]. Green Chemistry, 2003, 5(1): 92-94. |
12 | SUN J , ZHANG S , CHENG W , et al . Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate[J]. Tetrahedron Letters, 2008, 49(22): 3588-3591. |
13 | XIAO L F , LI F W , PENG J J , et al . Immobilized ionic liquid/zinc chloride: heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides[J]. Journal of Molecular Catalysis A: Chemical, 2006, 253(1-2): 265-269. |
14 | LÜ X B , LIANG B , ZHANG Y J , et al . Asymmetric catalysis with CO2: direct synthesis of optically active propylene carbonate from racemic epoxides[J]. Journal of the American Chemical Society, 2004, 126(12): 3732-3733. |
15 | KRUPER W J , DELLAR D D . Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metalloporphyrinates[J]. The Journal of Organic Chemistry, 1995, 60(3): 725-727. |
16 | PADDOCK R L , HIYAMA Y , MCKAY J M , et al . Co(Ⅲ) porphyrin/DMAP: an efficient catalyst system for the synthesis of cyclic carbonates from CO2 and epoxides[J]. Tetrahedron Letters, 2004, 45(9): 2023-2026. |
17 | JIN L L , CHANG T , JING H W . Coupling of epoxides with carbon dioxide catalyzed by ruthenium porphyrin complex[J]. Chinese Journal of Catalysis, 2007, 28(4): 287-288. |
18 | JIN L L , JING H W , CHANG T , et al . Metal porphyrin/ phenyltrimethylammonium tribromide: high efficient catalysts for coupling reaction of CO2 and epoxides[J]. Journal of Molecular Catalysis A: Chemical, 2007, 261(2): 262-266. |
19 | SHEN Y M , DUAN W L , SHI M . Chemical fixation of carbon dioxide catalyzed by binaphthyldiamino Zn, Cu, and Co salen-type complexes[J]. The Journal of Organic Chemistry, 2003, 68(4): 1559-1562. |
20 | RAMIN M , GRUNWALDT J D , BAIKER A . Behavior of homogeneous and immobilized zinc-based catalysts in cycloaddition of CO2 to propylene oxide[J]. Journal of catalysis, 2005, 234(2): 256-267. |
21 | BU Z , QIN G , CAO S . A ruthenium complex exhibiting high catalytic efficiency for the formation of propylene carbonate from carbon dioxide[J]. Journal of Molecular Catalysis A: Chemical, 2007, 277(1-2): 35-39. |
22 | LI F , XIA C , XU L , et al . A novel and effective Ni complex catalyst system for the coupling reactions of carbon dioxide and epoxides[J]. Chemical Communications, 2003(16): 2042-2043. |
23 | IKURA S , IKUKO M , AKIRA I , et al . Highly efficient synthesis of cyclic carbonates from epoxides catalyzed by indium tribromide system [J]. Tetrahedron Letters, 2011, 52: 721–723. |
24 | ROSHAN K R , JOSE T , KIM D , et al . Microwave-assisted one pot-synthesis of amino acid ionic liquids in water: simple catalysts for styrene carbonate synthesis under atmospheric pressure of CO2 [J]. Catalysis Science & Technology, 2014, 4(4): 963-970. |
25 | YANO T , MATSUI H , KOIKE T , et al . Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry[J]. Chemical Communications, 1997(12): 1129-1130. |
26 | LIU M , LIANG L , LI X , et al . Novel urea derivative-based ionic liquids with dual-functions: CO2 capture and conversion under metal- and solvent-free conditions[J]. Green Chemistry, 2016, 18(9): 2851-2863. |
27 | MARMITT S , GONCALVES P F . A DFT study on the insertion of CO2 into styrene oxide catalyzed by 1-butyl-3-methyl-imidazolium bromide ionic liquid[J]. Journal of Computational Chemistry, 2015, 36(17): 1322-1333. |
28 | GE W L , WANG X C , ZHANG L Y , et al . Fully-occupied Keggin type polyoxometalate as solid base for catalyzing CO2 cycloaddition and Knoevenagel condensation[J]. Catalysis Science & Technology, 2016, 6(2): 460-467. |
29 | SONG J L , ZHANG Z F , HU S Q , et al . MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions[J]. Green Chemistry, 2009, 11(7): 1031-1036. |
30 | TAKAHASHI T , WATAHIKI T , KITAZUME S , et al . Synergistic hybrid catalyst for cyclic carbonate synthesis: remarkable acceleration caused by immobilization of homogeneous catalyst on silica[J]. Chemical Communications, 2006, 37(15): 1664-1666. |
31 | SUN J , HAN L J , CHENG W G , et al . Efficient acid–base bifunctional catalysts for the fixation of CO2 with epoxides under metal- and solvent-free conditions[J]. ChemSusChem, 2011, 4: 502-507. |
32 | SUN J , ZHANG S J , CHENG W G , et al . Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate[J]. Tetrahedron Letters, 2008, 49: 3588–3591. |
33 | WATILE R A , DESHMUKH K M , DHAKE K P . Efficient synthesis of cyclic carbonate from carbon dioxide using polymer anchored diol functionalized ionic liquids as a highly active heterogeneous catalyst[J]. Catalysis Science & Technology, 2012, 2(5): 1051-1055. |
34 | YANG Z Z , ZHAO Y N , HE L N , et al . Highly efficient conversion of carbon dioxide catalyzed by polyethylene glycol-functionalized basic ionic liquids [J]. Green Chemistry, 2012, 14: 519-527. |
35 | WANG J Q , SUN J , CHENG W G , et al . Experimental and theoretical studies on hydrogen bond-promoted fixation of carbon dioxide and epoxides in cyclic carbonates[J]. Phys. Chem. Chem. Phys. , 2012, 14: 11021–11026. |
36 | ZHAO Y , TIAN J S , QI X H . Quaternary ammonium salt-functionalized chitosan: an easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide [J].MolJ. Catal. A: Chem. , 2007, 271: 284-289. |
37 | 张建, 张志智, 孙潇磊, 等 . CO2与环氧丙烷合成碳酸丙烯酯的多相催化剂研究[J]. 天然气化工(C1化学与化工), 2015(3): 41-44. |
ZHANG J , ZHANG Z Z , SUN X L , et al . Synthesis of propylene carbonate from CO2 and propylene oxide over a novel heterogeneous catalyst[J]. Natural Gas Chemical Industry, 2015(3): 41-44. | |
38 | ZHANG Z Z , SUN X L , ZHANG X W , et al . Catalytic synthesis of propylene carbonate from CO2 and propylene oxide on fixed bed[J]. Catalysis Letter, 2016, 146(10): 2098-2104. |
39 | 张志智, 孙潇磊, 王陶, 等 . 环状碳酸酯合成的多相催化剂研究[C]//第四届北京二氧化碳捕集利用与封存技术国际论坛. 北京: 中国石化出版社, 2017: 88-92. |
ZHANG Z Z , SUN X L , WANG T , et al . Synthesis of cyclic carbonates over a novel heterogeneous catalyst[C]//Proceedings of 4th International CO2 Capture Utilization & Storage (CCUS) Forum. Beijing: SINOPEC Press, 2017: 88-92. | |
40 | INOUE S , KOINUMA H , TSURUTA T . Copolymerization of carbon dioxide and epoxide[J]. Polym. Lett. Ed., 1969, 7(4): 287-292. |
41 | CHISHOLM M H , LLOBET D N , ZHOU Z P . Poly(propylene carbonate). 1. More about poly(propylene carbonate) formed from the copolymerization of propylene oxide and carbon dioxide employing a zinc glutarate catalyst[J]. Macromolecules, 2002, 35(17): 6494-6504. |
42 | 陈立班, 彭汉, 林欣欣, 等 . 合成聚碳酸酯、聚酯和聚醚的催化剂: CN89100701.6[P]. 1990-08-15. |
CHEN L B , PENG H , LIN X X , et al . Catalyst for synthesizing polycarbonates、polyester and polyether: CN89100701.6[P]. 1990-08-15. | |
43 | ZHU Q , MENG Y Z , TJONG S C , et al . Thermally stable and high molecular weight poly(propylene carbonate)s from carbon dioxide and propylene oxide[J]. Polym. Int. , 2002, 51(10): 1079-1085. |
44 | 孟跃中, 诸泉, 张世振, 等 . 负载型二元羧酸锌催化剂及其制备方法: CN01130099.X[P]. 2001-12-18. |
MENG Y Z , ZHU Q , ZHANG S Z , et al . Carried binary zine carboxylate catalyst and its preparing method: CN01130099.X[P]. 2001-12-18. | |
45 | TAKEDA N , INOUE S . Polymerization of 1,2-epoxypropane and copolymerization with carbon dioxide catalyzed by metalloporphyrins[J]. Macromolecular Chemistry & Physics, 1978, 179(5): 1377-1381. |
46 | ANDERSON C E , VAGIN S I , XIA W , et a1 . Cobaltoporphyrin catalyzed CO2 /epoxide copolymerization: selectivity control by molecular design[J]. Macromolecules, 2012, 45(17): 6840-6849. |
47 | STAMP L M , MANG S A , HOLMES A B , et a1 . Polymer supported chromium porphyrin as catalyst for polycarbonate formation in supercritical carbon dioxide[J]. Chem. Commun., 2001(23): 2502-2503. |
48 | CHEN X H , SHEN Z Q , ZHANG Y F . New catalytic systems for the fixation of carbon dioxide. 1. Copolymerization of carbon dioxide and propylene oxide with new rare-earth catalysts-RE(P2O4)3-Al(i-Bu)3-R(OH) n [J]. Macromolecules, 1991, 24(19): 5305-5308. |
49 | 赵晓江, 刘宾元, 王献红, 等 . 稀土配合物组合催化剂的制备方法: CN98125654.6[P]. 1998-12-14. |
ZHAO X J , LIU B Y , WANG X H , et al . Process for preparing composite catalyst for rare-earth complex: CN98125654.6[P]. 1998-12-14. | |
50 | 赵晓江, 刘宾元, 王献红, 等 . 高分子量脂肪族聚碳酸酯的制备方法: CN98125655.4[P]. 1998-12-14. |
ZHAO X J , LIU B Y , WANG X H , et al . Process for preparing high molecular weight aliphatic polycarbonate: CN98125655.4[P]. 1998-12-14. | |
51 | LIU B Y , ZHAO X J , WANG X H , et al . Copolymerization of carbon dioxide and propylene oxide with Ln(CCl3COO)3-based catalyst: The role of rare-earth compound in the catalytic system[J].J.Polym.Sci. , Part A: Polym.Chem. , 2001, 39(16): 2751-2754. |
52 | LIU B Y , ZHAO X J , WANG X H , et al . Copolymerization of carbon dioxide and propylene oxide with neodymium trichloroacetate-based coordination catalyst[J] . Polymer, 2003, 44(6): 1803-1808. |
53 | 关越, 孙万付, 张志智, 等 . CO2和乙烯合成丙烯酸反应的热力学分析[J]. 石油化工高等学校学报, 2012, 25(3): 6-12. |
GUAN Y , SUN W F , ZHANG Z Z , et al . Thermodynamic analysis on the formation of acrylic acid from CO2 and C2H4 [J]. Journal of Petrochemical Universities, 2012, 25(3): 6-12. | |
54 | HOBERG H , SCHAEFER D . Nickel(0) induzierte C—C-verknüpfung zwischen alkenen und kohlendioxid [J].J. Organomet. Chem. , 1982, 236(1): C28-C30. |
55 | HOBERG H , PERES Y , KRUGER C . A 1-oxa-2-nickela-5-cyclopentanone from ethene and carbon dioxide: preparation, structure, and reactivity [J]. Angew Chem. Int. Ed. Engl. , 1987, 26(8): 771-773. |
56 | PLESSOW P N , WEIGEL L , LINDNER R , et al . Mechanistic details of the nickel-mediated formation of acrylates from CO2, ethylene and methyl iodide[J]. Organometallics, 2013, 32: 3327-3338. |
57 | ARESTA M , PASTORE C , GIANNOCCARO P , et al . Evidence for spontaneous release of acrylates from a transition-metal complex upon coupling ethane or propene with a carboxylic moiety or CO2 [J]. Chem. Eur. J. , 2007, 13: 9028-9034. |
58 | GRAHAM D C , MITCHELL C , BRUCE M I , et al . Production of acrylic acid through nickel-mediated coupling of ethylene and carbon dioxide—A DFT Study[J]. Organometallics, 2007, 26: 6784-6792. |
59 | BRUCKMEIER C , LEHENMEIER M W , REICHARDT R , et al . Formation of methyl acrylate from CO2 and ethylene via methylation of nickelalactones[J]. Organometallics, 2010, 29: 2199-2202. |
60 | LEE S Y T , GHANI A A , D’ELIA V , et al . Liberation of methyl acrylate from metallalactone complexes via M-O ring opening (M=Ni, Pd) with methylation agents[J]. New J. Chem. , 2013, 37: 3512-2515. |
61 | ZHANG Z Z , GUO F J , KÜHN F E , et al . Liberation of acrylates from nickelalactones via Ni-O ring opening with alkyl iodides[J]. Appl. Organomet. Chem. , 2017, 31(2): 3567-3568. |
62 | JIN D , SCHMEIER T J , WILLIARD P G , et al . Lewis acid induced belimination from a nickelalactone: efforts toward acrylate production from CO2 and ethylene[J]. Organometallics, 2013, 32: 2152-2159. |
63 | JIN D , WILLIARD P G , HAZARI N , et al . Effect of sodium cation on metallacycle beta-hydride elimination in CO2-ethylene coupling to acrylates [J]. Chem. Eur. J. , 2014, 20: 3205-3211. |
64 | LEJKOWSKI M L , LINDNER R , KAGEYAMA T , et al . The first catalytic synthesis of an acrylate from CO2 and an alkene—A rational approach [J]. Chem. Eur. J. , 2012, 18: 14017-14025. |
65 | HENDRIKSEN C , PIDKO E A , YANG G , et al . Catalytic formation of acrylate from carbon dioxide and ethene[J]. Chem. A. Eur. J. , 2014, 20(38): 12037-12040. |
66 | ALVAREZ R , CARMONA E , COLE-HAMILTON D J , et al . Formation of acrylic acid derivatives from the reaction of carbon dioxide with ethylene complexes of molybdenum and tungsten[J]. J.Am.Chem.Soc. , 1985, 107(19): 5529-5531. |
67 | GALINDO A , PASTOR A , PEREZ P J , et al . Bis(ethylene) complexes of molybdenum and tungsten and their reactivity toward carbon dioxide. New examples of acrylate formation by coupling of ethylene and carbon dioxide [J]. Organometallics, 1993, 12: 4443-4451. |
68 | SCHUBERT G , PÁPAÌ I . Acrylate formation via metal-assisted C—C coupling between CO2 and C2H4: reaction mechanism as revealed from density functional calculations[J]. J.Am.Chem.Soc. , 2003, 125: 14847-14858. |
69 | COLLAZO C , CONEJO M D M , PASTOR A , et al . Synthesis and reactivity of bis(ethylene)-phosphite complexes of molybdenum(0) [J] . Inorg. Chim. Acta. , 1998, 272: 125-129. |
70 | BERNSKOETTER W H , TYLER B T . Kinetics and mechanism of molybdenum-mediated acrylate formation from carbon dioxide and ethylene [J]. Organometallics, 2011, 30: 520-527. |
71 | ARESTA M , PASTORE C , GIANNOCCARO P , et al . Evidence for spontaneous release of acrylates from a transition-metal complex upon coupling ethene or propene with a carboxylic moiety or CO2 [J]. Chem. Eur. J. , 2007. 13: 9028-9034. |
72 | MANZINI S , HUGUET N , TRAPP O , et al Palladium- and nickel-catalyzed synthesis of sodium acrylate from ethylene, CO2, and phenolate bases: optimization of the catalytic system for a potential process [J]. Eur.J. Org.Chem., 2015. Doi.org/10.1002/ejoc.201501113. |
73 | LI B , KYRAN S J , YEUNG A D , et al . Acrylic acid derivatives of Group 8 metal carbonyls: a structural and kinetic study[J]. Inorg. Chem. , 2013, 52: 5438-5447. |
74 | HOBERG H , JENNI K , ANGERMUND K , et al . C-C-linkages of ethene with CO2 on an iron(0) complex-synthesis and crystal structure analysis of [(PEt3)2Fe(C2H4)2] [J]. Angew Chem. Int. Ed. , 1987, 26: 153-155. |
75 | ALT H G , DENNER C E . Metallacyclen des zirkonocens[J].J. Organomet. Chem. , 1990, 390(1): 53-60. |
76 | CHATANI N , YAMASHITA K . Cp2ZrCl2-mediated three-component coupling reactions of CO2, ethylene (or alkynes), and electrophiles leading to carboxylic acid derivatives[J]. Synlett. , 2005, 36(35): 919-922. |
77 | ARESTA M , QUARANTA E . Synthesis, characterization and reactivity of [Rh(bpy)(C2H4)Cl]. A study on the reaction with C1 molecules (CH2O, CO2) and NaBPh4 [J]. J. Organomet. Chem. , 1993, 463: 215-221. |
78 | CHOI J C , KOHNO K , OTSUKA M , et al . Synthesis of a Rhodium(Ⅲ) diethyl μ-carbonato complex in the reaction of CO2, H2O and ethylene [J]. Organometallics, 2011, 30: 6060-6062. |
79 | BURKHART G , HOBERG H . Oxanickelacyclopentene derivatives from nickel(0), carbon dioxide, and alkynes[J]. Angew. Chem. Int. Ed. Engl. , 1982, 21(1): 76-76. |
80 | GRAHAM D C , BRUCE M I , METHA G F , et al . Regioselective control of the nickel-mediated coupling of acetylene and carbon dioxide—A DFT study [J]. Journal of Organometallic Chemistry, 2008, 693(16): 2703-2710. |
81 | SAITO S , NAKAGAWA S , KOIZUMI T , et al . Nickel-mediated regio- and chemoselective carboxylation of alkynes in the presence of carbon dioxide[J]. J. Org. Chem., 1999, 64: 3975-3978. |
82 | LIU C , LUO Y , ZHANG W Z , et al . DFT studies on the silver-catalyzed carboxylation of terminal alkynes with CO2: an insight into the catalytically active species[J]. Organometallics, 2014, 33: 2984−2989. |
83 | GOOßEN L J , RODRIGUEZ N , MANJOLINHO F , et al . Synthesis of propiolic acids via copper-catalyzed insertion of carbon dioxide into the C—H bond of terminal alkynes[J]. Adv. Synth. Catal. , 2010, 352(17): 2913-2917. |
84 | YU D, HALPERN Y, Copper- and copper-N-heterocyclic carbene-catalyzed C—H activating carboxylation of terminal alkynes with CO2 at ambient conditions[J]. Proc. Natl. Acad. Sci. USA, 2010, 107: 20184-20189. |
85 | ZHANG X , ZHANG W Z , REN X , et al . Ligand-free Ag(I)-catalyzed carboxylation of terminal alkynes with CO2 [J]. Org. Lett. , 2011, 13(9): 2402-2405. |
86 | YU D Y , TAN M X , ZHANG Y G . Carboxylation of terminal alkynes with carbon dioxide catalyzed by poly(N-heterocyclic carbene)-supported silver nanoparticles[J]. Adv. Synth. Catal., 2012, 354(6): 969-974. |
87 | ZHANG W Z , LI W J , ZHANG X , et al . Cu(I)-catalyzed carboxylative coupling of terminal alkynes, allylic chlorides, and CO2 [J]. Org. Lett. , 2010, 12(21): 4748-4751. |
88 | INAMOTO K , ASANO N , KOBAYASHI K , et al . A copper-based catalytic system for carboxylation of terminal alkynes: synthesis of alkyl 2-alkynoates[J]. Org. Biomol. Chem. , 2012, 10: 1514-1516. |
89 | YU B , ZHEN F D , CHUN X G , et al . Carboxylation of terminal alkynes at ambient CO2 pressure in ethylene carbonate[J]. Green Chem. , 2013, 15: 2401-2407. |
90 | LI S S , SUN J , Zhang Z Z , et al . Carboxylation of terminal alkynes with CO2 using novel silver N-heterocyclic carbene complexes[J]. Dalton Transactions, 2016, 45(26): 10577-10584. |
91 | ZHANG Z Z , MI R J , GUO F J , et al . 1, 3-Bis (4-methylbenzyl) imidazol-2-ylidene silver (I) chloride catalyzed carboxylative coupling of terminal alkynes, butyl iodide and carbon dioxide[J].SaudiJ. Chem. Soc. , 2017, 21(6): 685-690. |
92 | GUO F J , ZHANG Z Z , WANG J Y , et al . Silver-catalyzed one-pot synthesis of benzyl 2-alkynoates under ambient pressure of CO2 and ligand-free conditions[J]. Tetrahedron, 2017, 73(7): 900-906. |
93 | 李永昕, 马清祥, 陈兴权 . KOH/Naβ催化剂上丙醇与碳酸二甲酯合成碳酸二丙酯[J]. 石油化工, 2005, 34(9): 827-830. |
LI Y X , MA Q X, CHEN X Q . Synthesis of dipropyl carbonate from dimethyl carbonate and propyl alcohol on KOH /Naβ catalyst[J]. Petrochemical Technology, 2005, 34(9): 827-830. | |
94 | 王庆印, 钱锦华, 姚杰, 等 . KI催化酯交换合成碳酸二正辛酯[J]. 分子催化, 2005, 19(6): 462-467. |
WANG Q Y , QIAN J H , YAO J , et al . Potassium iodide used as catalyst for synthesis of dioctyl carbonate by transesterification[J]. Journal of Molecular Catalysis (China), 2005, 19(6): 462-467. | |
95 | 任勃, 李茹民, 董国君 . CaO/ZrO2固体碱的制备及催化合成碳酸二异辛酯[J]. 应用科技, 2006, 33(11): 66-68. |
REN B , LI R M , DONG G J . Synthesis of di-2-ethyhexyl carbonate with CaO/ZrO2 solid base catalyst[J]. Applied Science and Technology, 2006, 33(11): 66-68. | |
96 | 赵天生, 韩怡卓, 孙予罕 . 金属氧化物负载的KI对合成碳酸丙烯酯的催化性能[J]. 石油化工, 2000, 29(2): 101-105. |
ZHAO T S , HAN Y Z , SUN Y H . Synthesis of propylene carbonate catalyzed by metal oxide supported KI[J]. Petrochemical Technology, 2000, 29(2): 101-105. | |
97 | RYU Y J , GELB EIN A P . Process and catalyst for making dialkyl carbonate: US6392078B1[P]. 2002-05-21. |
98 | 王佃顺, 张喜文, 孙潇磊, 等 . 金属氧化物催化尿素与甲醇合成碳酸二甲酯[J]. 天然气化工(C1化学和化工), 2013, 38(6): 27-37. |
WANG D S , ZHANG X W , SUN X L , et al . Synthesis of dimethyl carbonate from urea and methanol catalyzed by metal oxides[J]. Natural Gas Chemical Industry, 2013, 38(6): 27-37. | |
99 | ZHANG Z Z , SUN X L , ZHANG X W , et al . Synthesis of dimethylcarbonate from urea and methanol catalyzed by various metal oxides and salts[J]. Journal of Fuel Chemistry and Technology, 2015, 43(11): 1375-1379. |
100 | 孙潇磊, 张志智, 尹泽群, 等 . 负载硝酸锌硅凝胶催化甲醇与尿素合成碳酸二甲酯[J]. 天然气化工(C1化学和化工), 2016, 41(3): 62-64. |
SUN X L , ZHANG Z Z , YIN Z Q , et al . Synthesis of dimethyl carbonate from urea and methanol over silicongel support zinc nitrate catalysts[J]. Natural Gas Chemical Industry, 2016, 41(3): 62-64. | |
101 | ETA V , MÄKIARVELA P , LEINO A , et al . Synthesis of dimethyl carbonate from methanol and carbon dioxide: circumventing thermodynamic limitations[J]. Ind. Eng. Chem. Res. , 2010, 49(20): 9609-9617. |
102 | JUNG K T , BELL A T . An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia[J]. J. Catal. , 2001, 204(2): 339-347. |
103 | YAMAZAKI Y , KAKUMA K , DU Y , et al . Synthesis of carbonates directly from 1atm CO2 and alcohols using CH2Cl2 [J]. Tetrahedron, 2010, 66: 9675-9680. |
104 | WADDELL D C , THIEL I , BUNGER A , et al . Investigating the formation of dialkyl carbonates using high speed ball milling[J]. Green Chem. , 2011, 13: 3156-3161. |
105 | HE Y X , SUN J , GUO F J , et al . Efficient synthesis of dibenzyl carbonates from benzyl halides and Cs2CO3 [J]. Journal of Saudi Chemical Society, 2017, 21: 583-586. |
106 | ZHANG Z , LIAO L L , YAN S S , et al . Lactamization of sp2 C—H bonds with CO2: transition-metal-free and redox-neutral[J]. Angew Chem. Int. Ed. , 2016, 55: 7068-7072. |
107 | WANG S , SHAO P , DU G X , et al . MeOTf- and TBD-mediated carbonylation of ortho-arylanilines with CO2 leading to phenanthridinone[J].J. Org. Chem. , 2016, 81(15): 6672-6676. |
108 | ZHANG Z , JU T , MIAO M , et al . Transition-metal-free lactonization of sp2 C–H bonds with CO2 [J]. Org. Lett. , 2017, 19(2): 396-399. |
109 | ZHANG W Z , LÜ S , LU X B . DBU-promoted carboxylative cyclization of o-hydroxy- and o-acetamidoacetophenon[J]. Beilstein J. Org. Chem. , 2015, 11: 906-912. |
110 | ZHANG W Z , YANG M W , LÜ X B . Carboxylative cyclization of substituted propenyl ketones using CO2: transition-metal-free synthesis of α-pyrones[J]. Green Chem. , 2016, 18: 4181-4184. |
111 | KAICHARLA T , THANGARAJ M , BIJU A T . Practical synthesis of phthalimides and benzamides by a multicomponent reaction involving arynes, isocyanides, and CO2/H2O[J]. Org. Lett. , 2014, 16(6): 1728-1731. |
112 | FUJIHARA T , HORIMOTO Y , MIZOE T , et al . Nickel-catalyzed double carboxylation of alkynes employing carbon dioxide[J]. Org. Lett. , 2014, 16(18): 4960-4863. |
113 | GARCIA-DOMINGUEZ P , FGHR L , RUSCONI G , et al . Palladium-catalyzed incorporation of atmospheric CO2: efficient synthesis of functionalized oxazolidinones[J]. Chem. Sci. , 2016, 7: 3914-3918. |
114 | RINTJEMA J , EPPING R , FIORANI G , et al . Substrate-controlled product divergence: conversion of CO2 into heterocyclic products[J]. Angew. Chem. Int. Ed. , 2016, 55(12): 3972-3976. |
115 | GAO X , YU B , YANG Z Z , et al . Ionic liquid-catalyzed C–S bond construction using CO2 as a C1 building block under mild conditions: a metal-free route to synthesis of benzothiazoles[J]ACS Catal. , 2015, 5(11): 6648-6652. |
116 | WANG X Q , LIU Y , MARTIN R . Ni-catalyzed divergent cyclization/carboxylation of unactivated primary and secondary alkyl halides with CO2 [J].AmJ. Chem. Soc. , 2015, 137(20): 6476-6479. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[3] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[4] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[5] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[6] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[7] | 谈继淮, 余敏, 张彤彤, 黄能坤, 王梓雯, 朱新宝. 新型栲胶聚丙氧基醚酯的合成及增塑PVC性能[J]. 化工进展, 2023, 42(9): 4847-4855. |
[8] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[9] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[10] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[11] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[12] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[13] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
[14] | 孙征楠, 李洪晶, 荆国林, 张福宁, 颜飚, 刘晓燕. EVA及其改性聚合物在原油降凝剂领域的应用[J]. 化工进展, 2023, 42(6): 2987-2998. |
[15] | 吕超, 张习文, 金理健, 杨林军. 新型两相吸收剂-离子液体系统高效捕获CO2[J]. 化工进展, 2023, 42(6): 3226-3232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |