化工进展 ›› 2019, Vol. 38 ›› Issue (01): 244-260.DOI: 10.16085/j.issn.1000-6613.2018-1014
收稿日期:
2018-05-15
修回日期:
2018-09-19
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
刘洪来
作者简介:
练成(1989—),男,博士,研究方向为表界面热力学。E-mail:<email>liancheng@ecust.edu.cn</email>。|刘洪来,教授,博士生导师,研究方向为界面科学与热力学。E-mail:<email>hlliu@ecust.edu.cn</email>。
基金资助:
Received:
2018-05-15
Revised:
2018-09-19
Online:
2019-01-05
Published:
2019-01-05
Contact:
Honglai LIU
摘要:
提高储能密度是目前超级电容器研究的重点,它取决于电极材料与电解液界面结构。本文介绍了经典密度泛函理论(CDFT)研究固液界面结构的基本原理以及在多孔电极材料中电解液溶液的热力学和动力学性质研究等进展。CDFT是一种基于统计力学的理论方法,被广泛应用于表界面效应、吸附、溶解等研究,在保证相同计算精度的前提下,具有比分子模拟更高的计算效率。CDFT可以系统地研究多孔材料孔径、孔几何形貌、表面官能团,电解液离子大小、化合价、组成以及溶剂种类、浓度等因素对超级电容器性能的影响,进一步发展考虑反应-传递性质的CDFT,可以为设计新型电极材料和筛选电解液提供理论依据。
中图分类号:
练成, 刘洪来. 经典密度泛函理论在双电层超级电容器研究中的应用[J]. 化工进展, 2019, 38(01): 244-260.
Cheng LIAN, Honglai LIU. Classic density functional theory for designing supercapacitors[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 244-260.
1 | CHMIOLA J , YUSHIN G , GOGOTSI Y , et al . Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313: 1760-1763. |
2 | SIMON P , GOGOTSI Y . Materials for electrochemical capacitors[J]. Nat. Mater., 2008, 7: 845-854. |
3 | SIMON P , GOGOTSI Y . Capacitive energy storage in nanostructured carbon–electrolyte systems[J]. Acc. Chem. Res. ,2013, 46: 1094-1103. |
4 | VAN AKEN K L , BEIDAGHI M , GOGOTSIE Y . Formulation of ionic liquid electrolyte to expand the voltage window of supercapacitors[J]. Angew. Chem. Int. Ed., 2015, 54: 4806-4809. |
5 | LI W , ZHANG F , DOU Y , et al . A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes[J]. Advanced Energy Materials, 2011, 1: 382-386. |
6 | FEDOROV M V , KORNYSHEV A A . Ionic liquids at electrified interfaces[J]. Chem. Rev., 2014, 114: 2978-3036. |
7 | ZHONG C , DENG Y , HU W , et al . A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chem. Soc. Rev., 2015, 44: 7484-7539. |
8 | ZHAN C , LIAN C , ZHANG Y , et al . Computational insights into materials and interfaces for capacitive energy storage[J]. Advanced Science ,2017, 4:1700059. |
9 | JIANG D , WU J . Microscopic insights into the electrochemical behavior of nonaqueous electrolytes in electric double-layer capacitors[J]. J. Phys. Chem. Lett., 2013, 4: 1260-1267. |
10 | JIANG D , JIN Z , HENDERSON D , et al . Solvent effect on the pore-size dependence of an organic electrolyte supercapacitor[J]. J. Phys. Chem. Lett., 2012, 3: 1727-1731. |
11 | LIAN C LIU K , VAN AKEN K , et al . Enhancing the capacitive performance of electric double-layer capacitors with ionic liquid mixtures[J]. ACS Energy Letters, 2016, 1:21-26. |
12 | LIAN C , JIANG D E , LIU H L , et al . A generic model for electric double layers in porous electrodes[J].PhysJ.Chem. C , 2016, 120:8704-8710. |
13 | EVANS R . Nature of the liquid-vapor interface and other topics in the statistical-mechanics of nonuniform, classical fluids[J]. Adv. Phys., 1979, 28:143-200. |
14 | EVANS R , OETTEL M , ROTH R , et al . New developments in classical density functional theory[J]. J. Phys-Condens Mat., 2016, 28: 240401. |
15 | HAGHMORADI A , WANG L , CHAPMAN W G . A density functional theory for colloids with two multiple bonding associating sites[J]. J. Phys-Condens Mat., 2016, 28: 244009. |
16 | WU J Z , LI Z D . Density-functional theory for complex fluids[J]. Annu. Rev. Phys. Chem., 2007, 58: 85-112. |
17 | LIAN C , CHEN X Q , ZHAO S L , et al . Substrate effect on the phase behavior of polymer brushes with lattice density functional theory[J]. Macromol. Theor. Simul., 2014, 23: 575-582. |
18 | PATRYKIEJEW A , SOKOLOWSKI S . Adsorption of associating fluids on solid surfaces: wetting transition from density functional theory[J]. The Journal of Physical Chemistry B, 1999, 103: 4466-4473. |
19 | TARAZONA P , EVANS R . A simple density functional theory for inhomogeneous liquids: wetting by gas at a solid-liquid interface[J]. Molecular Physics, 1984, 52: 847-857. |
20 | ROSENFELD Y . Free-dnergy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing[J]. Phys. Rev. Lett. ,1989, 63: 980. |
21 | HAMMAWA H , HAMAD E Z . A simple and accurate mixture model[J]. Fluid Phase Equilibria, 1996, 122: 67-74. |
22 | ROTH R , EVANS R , LANG A , et al . Fundamental measure theory for hard-sphere mixtures revisited: the white bear version[J]. Journal of Physics: Condensed Matter, 2002, 14: 12063. |
23 | YU Y X , WU J Z . Structures of hard-sphere fluids from a modified fundamental-measure theory[J]. J. Chem. Phys. ,2002, 117:10156-10164. |
24 | YU Y X , WU J Z . A modified fundamental measure theory for spherical particles in microchannels[J]. J. Chem. Phys., 2003, 119: 2288-2295. |
25 | LIAN C , WANG L , CHEN X Q , et al . Modeling swelling behavior of thermoresponsive polymer brush with lattice density functional theory[J]. Langmuir, 2014, 30: 4040-4048. |
26 | LIAN C , LIU H L , HENDERSON D , et al . Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes? [J]. Journal of Physics: Condensed Matter, 2016, 28: 414005. |
27 | JIANG J , CAO D P , JIANG D E , et al . Time-dependent density functional theory for ion diffusion in electrochemical systems[J]. J.Phys. Condens. Matter, 2014, 26: 284102. |
28 | JIANG D E , JIN Z H , WU J Z . Oscillation of capacitance inside nanopores[J]. Nano Lett., 2011, 11: 5373-5377. |
29 | JIANG D E , WU J Z . Microscopic insights into the electrochemical behavior of nonaqueous electrolytes in electric double-layer capacitors[J].PhysJ. Chem. Lett. ,2013, 4:1260-1267. |
30 | LIAN C , GALLEGOS A , LIU H L , et al . Non-scaling behavior of electroosmotic flow in voltage-gated nanopores[J]. Phys. Chem. Chem. Phys., 2017, 19: 450-457. |
31 | LIAN C , JIANG D E , LIU H L , et al . A generic model for electric double layers in porous electrodes[J].PhysJ.Chem. C, 2016, 120:8704-8710. |
32 | LETCHWORTH-WEAVER K , ARIAS T . Joint density functional theory of the electrode-electrolyte interface: application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge[J]. Physical Review B, 2012, 86: 075140. |
33 | ZHAN C , NEAL J , WU J , et al . Quantum effects on the capacitance of graphene-based electrodes[J]. |
Phys J. . Chem. C, 2015, 119:22297-22303. | |
34 | LIAN C , ZHAN C , JIANG D E , et al . Capacitive energy extraction by few-layer graphene electrodes[J]. |
Phys J. . Chem. C, 2017, 121:14010-14018. | |
35 | LIAN C , KONG X , LIU H L , et al . On the hydrophilicity of electrodes for capacitive energy extraction[J]. J. Phys.Condens. Matter, 2016, 28:464008. |
36 | VAN AKEN K L , Beidaghi M , Gogotsi Y . Formulation of ionic‐liquid electrolyte to expand the voltage window of supercapacitors[J]. Angew. Chem. Int. Ed., 2015, 54:4806-4809. |
37 | JIANG D E , WU J Z . Unusual effects of solvent polarity on capacitance for organic electrolytes in a nanoporous electrode[J]. Nanoscale, 2014, 6: 5545-5550. |
38 | LIAN C , ZHAO S L , LIU H L , et al . Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids[J]. J. Chem. Phys., 2016, 145:204707. |
39 | LIAN C , LIU K , LIU H L , et al . Impurity effects on charging mechanism and energy storage of nanoporous supercapacitors[J]. |
Phys J. . Chem. C, 2017, 121:14066-14072. | |
40 | MA Z F, YUAN X , LI L , et al . A review of cathode materials and structures for rechargeable lithium-air batteries[J]. Energy Environ. Sci., 2015, 8: 2144-2198. |
41 | CHE H , CHEN S , XIE Y , et al . Electrolyte design strategies and research progress for room-temperature sodium-ion batteries[J]. Energy Environ. Sci., 2015, 10:1075-1101. |
42 | 李作鹏,赵建国,温雅琼, 等 . 超级电容器电解质研究进展[J]. 化工进展, 2012, 31(8):1631-1640. |
LI Z P , ZHAO J G , WEN Y Q , et al . Research progress of electrolytes in supercapacitors[J]. Chemical Industry and Engineering Progress, 2012, 31(8):1631-1640. | |
43 | LIAN C , LIU H L , WU J Z . Ionic-liquid mixture expands the potential window and capacitance of a supercapacitor in tandem[J]. |
Phys J. . Chem. C, 2018, 122:18304-18310. | |
44 | LIAN C , SU H P , LIU H L , et al . Electrochemical behavior of nanoporous supercapacitors with oligomeric ionic liquids[J]. |
Phys J. . Chem. C , 2018, 122:14402-14407. |
[1] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[2] | 朱薇, 齐鹏刚, 苏银海, 张书平, 熊源泉. 生物油分级多孔碳超级电容器电极材料的制备及性能[J]. 化工进展, 2023, 42(6): 3077-3086. |
[3] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[4] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
[5] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[6] | 蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
[7] | 杜保宁, 赵珊, 刘向卿, 张毅, 肖雅茹, 张少飞, 李田田, 孙金峰. 纳米多孔CuMn基氧化物电极的制备及性能[J]. 化工进展, 2023, 42(3): 1484-1492. |
[8] | 张艺璇, 胡伟, 刘梦瑶, 鞠敬鸽, 赵义侠, 康卫民. 聚合物电解质在锌离子电池中的研究进展[J]. 化工进展, 2023, 42(3): 1397-1410. |
[9] | 卓祖优, 宋生南, 黄明堦, 杨旋, 卢贝丽, 陈燕丹. 草酸钾-尿素协同活化法制备超大比表面积面粉基多级孔炭及其电化学储能应用[J]. 化工进展, 2023, 42(2): 925-933. |
[10] | 田甜, 雷西萍, 于婷, 樊凯, 宋晓琪, 朱航. 碳材料在柔性超级电容器中的研究进展[J]. 化工进展, 2023, 42(2): 884-896. |
[11] | 王晓亮, 于振秋, 常雷明, 赵浩男, 宋晓琦, 高靖淞, 张一波, 黄传辉, 刘忆, 杨绍斌. 电沉积法制备氢氧化物/氧化物超级电容器电极的研究进展[J]. 化工进展, 2023, 42(10): 5272-5285. |
[12] | 龙垠荧, 杨健, 管敏, 杨怡洛, 程正柏, 曹海兵, 刘洪斌, 安兴业. 木质素基材料在混合型超级电容器电极材料中的研究进展[J]. 化工进展, 2022, 41(9): 4855-4865. |
[13] | 陈二军, 张玉玲, 路少磊, 段海洋, 靳文章. 空气纳米气泡的稳定性及理化特性[J]. 化工进展, 2022, 41(9): 4673-4681. |
[14] | 关浩然, 朱丽娜, 朱凌岳, 苑丹丹, 张雨晴, 王宝辉. 利用不同氢源及氮源电化学合成氨研究进展与挑战[J]. 化工进展, 2022, 41(8): 4098-4110. |
[15] | 张伟, 安兴业, 刘利琴, 龙垠荧, 张昊, 程正柏, 曹海兵, 刘洪斌. 木质素纳米颗粒/天然纤维基活性碳纤维材料的制备及其电化学性能[J]. 化工进展, 2022, 41(7): 3770-3783. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |