1 |
中商产业研究院. 2016年全球汽车销量大数据 :中国汽车销量蝉联第一[EB/OL]. .
|
|
In the commercial and industrial research institute. Global car sales data for 2016: car sales in China for more than the first[EB/OL]. http: // .
|
2 |
韩松 . 车用发动机智能冷却系统基础问题研究[D]. 杭州:浙江大学, 2012.
|
|
HAN Song . Fundamental vesearch on intelligent cooling system for vehicle engines[D]. Hangzhou: Zhejiang University, 2012.
|
3 |
CHO H, JUNG D , FILIPI Z S , et al . Application of controllable electric coolant pump for fuel economy and cooling performance improvement [J]. Journal of Engineering for Gas Turbines & Power, 2007, 129(1): 43-50.
|
4 |
PANG H H , BRACE C J , AKEHURST S . Potential of a controllable engine cooling system to reduce NO x emissions in diesel engines [C]// SAE World Congress & Exhibition. SAE Technical Papers. New York: SAE International, 2004: 146-160.
|
5 |
BERNHARD U , FRIEDRICH B , JÜRGEN F , et al . Development of engine cooling systems by coupling CFD simulation and heat exchanger analysis programs [C]//International Congress and Exposition. SAE Technical Papers. New York: SAE International, 2001: 23-37.
|
6 |
KULKARNI D P , VAJJHA R S , DAS D K, et al . Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant [J]. Applied Thermal Engineering, 2008, 28(14): 1774-1781.
|
7 |
LEE S P, CHOI S , LI S , et al . Measuring thermal conductivity of fluids containing oxide nanoparticles [J]. ASME Journal of Heat Transfer, 1999, 121(2): 280-289.
|
8 |
NARAKI M , PEYGHAMBARZADEH S M , HASHEMABADI S H , et al . Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator[J]. International Journal of Thermal Sciences, 2013, 66: 82-90.
|
9 |
HUSSEIN A M , BAKAR R A , KADIRGAMA K , et al . Heat transfer enhancement using nanofluids in an automotive cooling system[J]. International Communications in Heat & Mass Transfer, 2014, 53(4): 195-202.
|
10 |
M'HAMED B , SIDIK N A C , AKHBAR M F A , et al . Experimental study on thermal performance of MWCNT nanocoolant in Perodua Kelisa, 1000 cc radiator system[J]. International Communications in Heat & Mass Transfer, 2016, 76(8): 156-161.
|
11 |
OLIVEIRA G A , CONTRERAS E M C , FILHO E P B . Experimental study on the heat transfer of MWCNT/water nanofluid flowing in a car radiator [J]. Applied Thermal Engineering, 2016, 111(1): 1450-1456.
|
12 |
ALI M, EL-LEATHY A M , AL-SOFYANY Z . The effect of nanofluid concentration on the cooling system of vehicles radiator[J]. Advances in Mechanical Engineering, 2014, 96(8): 1-13.
|
13 |
CHAKRABORTY S , SARKAR I , BEHERA D K , et al . Experimental investigation on the effect of dispersant addition on thermal and rheological characteristics of TiO2 nanofluid[J]. Powder Technology, 2017, 307(2): 10-24.
|
14 |
DAS P K, MALLIK A K , GANGULY R , et al . Synthesis and characterization of TiO2-water nanofluids with different surfactants[J]. International Communications in Heat & Mass Transfer, 2016, 75(7): 341-348.
|
15 |
王宏宇,王助良,杜敏,等 . 纳米流体的制备及稳定性分析[J]. 河南科技大学学报(自然科学版), 2016,53(1): 5-8, 25.
|
|
WANG H Y , WANG Z L , DU M , et al . Preparation and stability of nanofluids[J]. Journal of Henan University of Science and Technology (Natural Science), 2016, 53(1): 5-8, 25.
|
16 |
LÜ Y Z , LI C , SUN Q , et al . Effect of dispersion method on stability and dielectric strength of transformer oil-based TiO2 nanofluids[J]. Nanoscale Research Letters, 2016, 11(1): 515-524.
|
17 |
PAK B C, CHO Y I . Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer, 1998, 11(2): 151-170.
|
18 |
ŻYŁA G . Thermophysical properties of ethylene glycol based yttrium aluminum garnet (Y3Al5O12-EG) nanofluids[J]. International Journal of Heat & Mass Transfer, 2016, 92(1): 751-756.
|
19 |
XUAN Yimin , ROETZEL W . Conceptions for heat transfer correlation of nanofluids[J]. International Journal of Heat & Mass Transfer, 2000, 43(19): 3701-3707.
|
20 |
CHEN Haisheng , WITHARANA S , JIN Yi , et al . Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology [J]. Particuology, 2009, 7(2): 151-157.
|
21 |
BEJAN A . Convection heat transfer[J]. Wiley, 2013, 17(1): 153-232.
|
22 |
郭显光 . 熵值法及其在综合评价中的应用[J]. 财贸研究, 1994(6):56-60.
|
|
GUO X G . Entropy method and its application in comprehensive evaluation[J]. Finance and Trade Research, 1994(6): 56-60.
|
23 |
MOFFAT R J . Describing the uncertainties in experimental results [J]. Experimental Thermal & Fluid Science, 1988, 1(1): 3-17.
|
24 |
XUAN Yimin , LI Qiang . Investigation on convective heat transfer and flow features of nanofluids[J]. Journal of Heat Transfer, 2003, 125(1): 151-155.
|
25 |
KAKAÇ S , PRAMUANJAROENKIJ A . Review of convective heat transfer enhancement with nanofluids[J]. International Journal of Heat & Mass Transfer, 2009, 52(13/14): 3187-3196.
|
26 |
WANG Xinwei , XU Xianfan , CHOI S U S . Thermal conductivity of nanoparticle-fluid mixture[J]. Journal of Thermophysics & Heat Transfer, 1999, 13(13): 474-480.
|
27 |
KEBLINSKI P , PHILLPOT S R , CHOI S U S , et al . Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) [J]. International Journal of Heat & Mass Transfer, 2002, 45(4): 855-863.
|
28 |
BUONGIORNO J . Convective transport in nanofluids [J]. Journal of Heat Transfer, 2006, 128(3): 240-250.
|