[1] 刘超. 钙钛矿太阳能电池的制备及其光电化学性能研究[D]. 合肥:合肥工业大学, 2016. LIU C. Study on the preparation and photoelectric chemical properties of perovskite solar cells[D]. Hefei:Hefei University of Technology, 2016.
[2] 李海雁, 杨锡震. 太阳能电池[J]. 大学物理, 2003, 22(9):36-41. LI H Y, YANG X Z. Solar cell[J]. College Physics, 2003, 22(9):36-41.
[3] 梁宗存, 沈辉, 李戬洪. 太阳能电池及材料研究[J]. 材料导报, 2000, 14(8):38-40. LIANG Z C, SHEN H, LI J H. Research on solar cells and materials[J]. Material Review, 2000, 14(8):38-40.
[4] 向发午. Bi2S3量子点敏化TiO2太阳能电池的制备和性能研究[D]. 武汉:华中科技大学, 2012. XIANG F W. Preparation and performance of the solar cell with Bi2S3 quantum dot sensitized TiO2[D]. Wuhan:Huazhong University of Science and Technology, 2012.
[5] YANG B, BAI Y, CHENG T, et al. Research progress of all-solid-state quantum dot solar cells[J]. Micronanoelectronic Technology, 2017, 54(4):235-242.
[6] 谭淼. Sb2S3薄膜的制备及其在太阳能电池中的应用[D]. 锦州:渤海大学, 2017. TAN M. Preparation of Sb2S3 thin film and its application in solar cell[D]. Jinzhou:Bohai University, 2017.
[7] CHOI Y C, LEE D U, NOH J H, et al. Highly Improved Sb2S3 sensitized-inorganic-organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy[J]. Advanced Functional Materials, 2014, 24(23):3587-3592.
[8] 卫会云, 王国帅, 吴会觉, 等. 量子点敏化太阳能电池研究进展[J]. 物理化学学报, 2016, 32(1):201-213. WEI H Y, WANG G S, WU H J, et al. Research progress of quantum dot sensitized solar cells[J]. Phys.-Chim. Sin., 2016, 32(1):201-213.
[9] 马娟, 宋凤丹, 陈昊, 等. 量子点敏化太阳能电池研究进展[J]. 化工进展, 2015, 34(10):3601-3608. MA J, SONG F D, CHEN H, et al. Research progress of quantum dot sensitized solar cells[J]. Chemical Industry and Engineering Progress, 2015, 34(10):3601-3608.
[10] ZHAO L, ZHENG Z, WANG M, et al. Quantum dot solar cells:US8426728B2[P]. 2013.
[11] 程磊, 曾涛, 陈云霞, 等. 量子点敏化太阳能电池研究进展[J]. 陶瓷学报, 2016, 37(6):613-620. CHEN L, ZENG T, CHEN Y X, et al. Research progress of quantum dot sensitized solar cells[J]. Journal of Ceramics, 2016, 37(6):613-620.
[12] ITZHAIK Y, NⅡTSOO O, PAGE M, et al. Sb2S3-sensitized nanoporous TiO2 solar cells[J]. Journal of Physical Chemistry C, 2009, 113:4254-4256.
[13] NEZU S, LARRAMONA G, CHON C, et al. Light soaking and gas effect on nanocrystalline TiO2/Sb2S3/CuSCN photovoltaic cells following extremely thin absorber concept[J]. Jphyschemc, 2010, 114:6854-6859.
[14] SENTHIL T S, MUTHUKUMARASAMY N, KANG M. Ball/dumbbell-like structured micrometer-sized Sb2S3 particles as a scattering layer in dye-sensitized solar cells[J]. Optics Letters, 2014, 39(7):1865-1868.
[15] CHANG J A, RHEE J H, IM S H, et al. High-performance nanostructured inorganic-organic heterojunction solar cells[J]. Nano Letters, 2010, 10(7):2609-2612.
[16] WANG Q, CHEN C, LIU W, et al. Recent progress in all-solid-state quantum dot-sensitized TiO2 nanotube array solar cells[J]. Journal of Nanoparticle Research, 2016, 18(1):7-23.
[17] CARDOSO J C, GRIMES C A, FENG X, et al. Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic- inorganic thin film photovoltaics[J]. Chemical Communications, 2012, 48(22):2818-2820.
[18] 席金芳. Sb2S3/TiO2纳米管阵列导质结的制备及光电性能研究[D]. 成都:西南交通大学, 2015. XI J F. Preparation of Sb2S3/TiO2 nanotube array and its photoelectric properties[D]. Chengdu:Southwest Jiaotong University, 2015.
[19] GU K, ZHONG P, GUO M, et al. Sonication-polished anodic TiO2 nanotube array-based photoanode for efficient solar energy conversion[J]. Journal of Solid State Electrochemistry, 2016, 20(12):3337-3348.
[20] 李薇馨. 基于TiO2光阳极的敏化太阳能电池研究[D]. 武汉:华中科技大学, 2016. LI W X. Study on the sensitized solar cell based on TiO2 photoanode[D]. Wuhan:Huazhong University of Science and Technology, 2016.
[21] 王尚鑫, 李吉, 严金梅, 等. Sb2S3/TiO2纳米棒的构筑及其在杂化太阳电池中的应用[J]. 电源技术, 2017, 41(3):425-428. WANG S X, LI J, YAN J M, et al. Sb2S3/TiO2 nanoparticle construction and its application in hybrid solar cells[J]. Chinese Journal of Power Sources, 2017, 41(3):425-428.
[22] ZHANG H, SONG L, LUO L, et al. TiO2/Sb2S3/P3HT based inorganic-organic hybrid heterojunction solar cells with enhanced photoelectric conversion performance[J]. Journal of Electronic Materials, 2017, 46(7):4670-4675.
[23] HAN J, LIU Z, ZHENG X, et al. Trilaminar ZnO/ZnS/Sb2S3 nanotube arrays for efficient inorganic-organic hybrid solar cells[J]. RSC Advances, 2014, 4(45):23807-23814.
[24] ENGLMAN T, TERKIELTAUB E, ETGAR L. High open circuit voltage in Sb2S3/metal oxide-based solar cells[J]. Journal of Physical Chemistry C, 2015, 119(23):12904-12909.
[25] LEI H, YANG G, GUO Y, et al. Efficient planar Sb2S3 solar cells using a low-temperature solution-processed tin oxide electron conductor[J]. Physical Chemistry Chemical Physics, 2016, 18(24):16436-16443.
[26] 郭志敏. ZnO壳核式微纳分级结构有序阵列杂化太阳电池的研究[D]. 石家庄:河北科技大学, 2016. GUO Z M. The study of the ordered array hybrid solar cell of ZnO shell nuclear microstructure[D]. Shijiazhuang:Hebei University of Science and Technology, 2016.
[27] PARIZE R, KATERSKI A, GROMYKO I, et al. ZnO/TiO2/Sb2S3 core-shell nanowire heterostructure for extremely thin absorber solar cells[J]. Journal of Physical Chemistry C, 2017, 121(18):9672-9680.
[28] 周儒. TiO2基量子点敏化太阳能电池光电转换性能研究[D]. 合肥:中国科学技术大学, 2014. ZHOU R. Study on photoelectric conversion performance of TiO2 based quantum dot sensitized solar cells[D]. Hefei:University of Science and Technology of China, 2014.
[29] 刘英博. 基于多孔TiO2光阳极的量子点敏化太阳能电池[D]. 天津:天津大学, 2015. LIU Y B. A quantum dot sensitized solar cell based on the porous TiO2 photoanode[D]. Tianjin:Tianjin University, 2015.
[30] DENG H, YUAN S, YANG X, et al. Efficient and stable TiO2/Sb2S3 planar solar cells from absorber crystallization and Se-atmosphere annealing[J]. Materials Today Energy, 2017, 3:15-23.
[31] SANG H I, LIM C S, CHANG J A, et al. Toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells[J]. Nano Letters, 2011, 11(11):4789-4793.
[32] 豆岁阳. 新型纳米结构太阳能电池的制备及性能表征[D]. 北京:北京交通大学, 2014. DOU S Y. Preparation and characterization of new nano-structured solar cells[D]. Beijing:Beijing Jiaotong University, 2014.
[33] GÖDEL K C, CHOI Y C, ROOSE B, et al. Efficient room temperature aqueous Sb2S3 synthesis for inorganic-organic sensitized solar cells with 5.1% efficiencies[J]. Chemical Communications, 2015, 51(41):8640-8643.
[34] CHOI Y C, SEOK S I. Efficient Sb2S3-sensitized solar cells via single-step deposition of Sb2S3 using S/Sb-ratio-controlled SbCl3-thiourea complex solution[J]. Advanced Functional Materials, 2015, 25(19):2892-2898.
[35] 张晓萍. 聚苯胺在Sb2S3/SnS敏化太阳能电池中的应用研究[D]. 泉州:华侨大学, 2013. ZHANG X P. Application of polyaniline in Sb2S3/SnS sensitized solar cells[D]. Quanzhou:Huaqiao University, 2013.
[36] ITZHAIK Y, BENDIKOV T, HINES D, et al. Band diagram and effects of the KSCN treatment in TiO2/Sb2S3/CuSCN ETA cells[J]. Journal of Physical Chemistry C, 2016, 120(1):31-41.
[37] KIM K, JUNG K, LEE M J, et al. Effect of processing parameters on photovoltaic properties of Sb2S3 quantum dot-sensitised inorganic-organic heterojunction solar cells[J]. International Journal of Nanotechnology, 2016, 13(4/5/6):345-353.
[38] LIM C S, IM S H, RHEE J H, et al. Hole-conducting mediator for stable Sb2S3-sensitized photoelectrochemical solar cells[J]. Journal of Materials Chemistry, 2012, 22(3):1107-1111.
[39] JIN H H, SANG H I, KIM H, et al. Sb2S3-sensitized photoelectrochemical cells:open circuit voltage enhancement through the introduction of poly-3-hexylthiophene interlayer[J]. Journal of Physical Chemistry C, 2012, 116(39):20717-20721.
[40] MOON S J, ITZHAIK Y, YUM J H, et al. Sb2S3-based mesoscopic solar cell using an organic hole conductor[J]. J. Phys. Chem. Lett., 2010, 1(10):1524-1527.
[41] BOIX P P, LARRAMONA G, JACOB A, et al. Hole transport and recombination in all-solid Sb2S3-sensitized TiO2 solar cells using CuSCN as hole transporter[J]. Journal of Physical Chemistry C, 2012, 116(1):1579-1587.
[42] LIM C S, IM S H, CHANG J A, et al. Improvement of external quantum efficiency depressed by visible light-absorbing hole transport material in solid-state semiconductor-sensitized heterojunction solar cells[J]. Nanoscale, 2012, 4(2):429-432.
[43] CHRISTIANS J A, KAMAT P V. Trap and transfer:two-step hole injection across the Sb2S3/CuSCN interface in solid-state solar cells[J]. ACS Nano, 2013, 7(9):7967-7974.
[44] CHRISTIANS J A, LEIGHTON D T, KAMAT P V. Rate limiting interfacial hole transfer in Sb2S3 solid-state solar cells[J]. Energy & Environmental Science, 2014, 7(3):1148-1158.
[45] KIM J K, VEERAPPAN G, HEO N, et al. Efficient hole extraction from Sb2S3 heterojunction solar cells by the solid transfer of preformed PEDOT:PSS film[J]. The Journal of Physical Chemistry C, 2014, 118(39):22672-22677.
[46] SUN P, ZHANG X, WANG L, et al. Efficiency enhanced rutile TiO2 nanowire solar cells based on Sb2S3 absorber and CuI hole conductor[J]. New Journal of Chemistry, 2015, 39(9):7243-7250.
[47] 杨博, 白一鸣, 程泰, 等. 全固态量子点太阳电池的研究进展[J]. 微纳电子技术, 2017, 54(4):235-242. YANG B, BAI Y, CHENG T, et al. Research progress of all-solid- state quantum dot solar cells[J]. Micronanoelectronic Technology, 2017, 54(4):235-242.
[48] IVAN M S, GIMENEZ S, GOMEZ R, et al. Recombination in quantum dot sensitized solar cells[J]. Accounts of Chemical Research, 2009, 42(11):1848-1857.
[49] CHANG J A, SANG H I, YONG H L, et al. Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels[J]. Nano Letters, 2012, 12(4):1863- 1867.
[50] TSUJIMOTO K, NGUYEN D C, ITO S, et al. TiO2 surface treatment effects by Mg2+, Ba2+, and Al3+ on Sb2S3 extremely thin absorber solar cells[J]. Journal of Physical Chemistry C, 2012, 116(25):13465- 13471.
[51] FUKUMOTO T, MOEHL T, NIWA Y, et al. Effect of interfacial engineering in solid-state nanostructured Sb2S3 heterojunction solar cells[J]. Advanced Energy Materials, 2013, 3(1):29-33.
[52] KANG H W, LEE J W, PARK N G. Effect of double blocking layers at TiO2/Sb2S3 and Sb2S3/spiro-MeOTAD interfaces on photovoltaic performance[J]. Faraday Discussions, 2014, 176:287-299.
[53] ITO S, TSUJIMOTO K, NGUYEN D C, et al. Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency[J]. International Journal of Hydrogen Energy, 2013, 38(36):16749-16754.
[54] GODEL K C, ROOSE B, SADHANALA A, et al. Partial oxidation of the absorber layer reduces charge carrier recombination in antimony sulfide solar cells[J]. Physical Chemistry Chemical Physics, 2017, 19(2):1425-1430. |