[1] 王宝冬,汪国高,刘斌,等. 选择性催化还原脱硝催化剂的失活、失效预防、再生和回收利用研究进展[J]. 化工进展, 2013, 32(s1):133-139. WANG Baodong, WANG Guogao, LIU Bin, et al. Development of SCR catalyst deactivation, regeneration and recycling[J]. Chemical Industry and Engineering Progress, 2013, 32(s1):133-139.
[2] MUZIO L, BOGSETH S, HIMES R, et al. Ammonium bisulfate formation and reduced load SCR operation[J]. Fuel, 2017, 206:180-189.
[3] 庄柯,张亚平,黄天娇,等. Ho改性Fe-Mn/TiO2低温SCR脱硝催化剂硫中毒及热还原再生研究[J]. 燃料化学学报, 2017, 45(11):1356-1364. ZHUANG Ke, ZHANG Yaping, HUANG Tianjiao, et al. Sulfur-poisoning and thermal reduction regeneration of holmium-modified Fe-Mn/TiO2 catalyst for low-temperature SCR[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11):1356-1364.
[4] 范芸珠, 曹发海. 硫酸铵热分解反应动力学研究[J]. 高校化学工程学报, 2011, 25(2):341-346. FAN Yunzhu, CAO Fahai. Thermal decomposition kinetics of ammonium sulfate[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(2):341-346.
[5] 姚宣,郑鹏,郑伟. SCR脱硝系统最低连续喷氨温度的研究[J]. 中国电力, 2016, 49(1):146-150. YAO Xuan, ZHENG Peng, ZHENG Wei. Study on minimum continuous-operation temperature of SCR system[J]. Electric Power, 2016, 49(1):146-150.
[6] MATSUDA S, KAMO T, KATO A, et al. Deposition of ammonium bisulfate in the selective catalytic reduction of nitrogen oxides with ammonia[J]. Industrial & Engineering Chemistry Product Research & Development, 1982, 21(1):48-52.
[7] SHIKADA T, FUJIMOTO K, KUNUGI T, et al. Reduction of nitric oxide with ammonia on vanadium oxide catalysts supported on homogeneously precipitated silica-titania[J]. Industrial & Engineering Chemistry Product Research & Development, 1981, 20(1):91-95.
[8] ORSENIGO C, LIETTI L, TRONCONI E, et al. Dynamic investigation of the role of the surface sulfates in NOx reduction and SO2 oxidation over V2O5-WO3/TiO2 catalysts[J]. Industrial & Engineering Chemistry Research, 1998, 165(37):2350-2359.
[9] ZHU Z, NIU H, LIU Z, et al. Decomposition and reactivity of NH4HSO4 on V2O5/AC catalysts used for NO reduction with ammonia[J]. Journal of Catalysis, 2000, 195(2):268-278.
[10] BALTIN G, KÖSER H, WENDLANDT K P. Sulfuric acid formation over ammonium sulfate loaded V2O5-WO3/TiO2 catalysts by DeNOx reaction with NO x[J]. Catalysis Today, 2002, 75(1):339-345.
[11] BAI S, WANG Z, LI H, et al. SO2 promotion in NH3-SCR reaction over V2O5/SiC catalyst at low temperature[J]. Fuel, 2017, 194:36-41.
[12] HUANG Z, ZHU Z, LIU Z. Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures[J]. Applied Catalysis B:Environmental, 2002, 39(4):361-368.
[13] MORETTI A L, TRISCORI R J, RITZENTHALER D P. A system approach to SO3 mitigation[R]. Ohio:The Babcock & Wilcox Company, 2006:1-6.
[14] 王宏亮,薛建明,许月阳,等. 燃煤电站锅炉烟气中SO3的生成及控制[J]. 电力科技与环保, 2014, 30(5):17-20. WANG Hongliang, XUE Jianming, XU Yueyang, et al. Formation and control of SO3 from coal-fired power plants[J]. Electric Power Technology and Environmental Protection, 2014, 30(5):17-20.
[15] MITSUI Y, IMADA N, KIKKAWA H, et al. Study of Hg and SO3 behavior in flue gas of oxy-fuel combustion system[J]. International Journal of Greenhouse Gas Control, 2011, 5(12):S143-S150.
[16] BELO L P, ELLIOTT L K, Stanger R J, et al. High-temperature conversion of SO2 to SO3:homogeneous experiments and catalytic effect of fly ash from air and oxy-fuel firing[J]. Energy & Fuels, 2014, 28(11):7243-7251.
[17] BLYTHE G M, MCMILLAN R. Sulfuric acid removal process evaluation:long-term results[R]. US Department of Energy(US), DE-FC26-99FT40718, 2002:E-2.
[18] MOSER R E. SO3's impacts on plant O & M:Part Ⅲ[J]. Power, 2007, 151(4):72-82.
[19] 由长福,祁海鹰,王伟,等. 中温烟气生石灰脱硫模型[J]. 燃烧科学与技术, 2002, 8(3):193-198. YOU Changfu, QI Haiying, WANG Wei, et al. Model for sulphur absorption of middle temperature flue gas with lime[J]. Journal of Combustion Science and Technology, 2002, 8(3):193-198.
[20] 侯波,祁海鹰,由长福,等. 用于中温烟气脱硫的新型钙基脱硫剂[J]. 工程热物理学报, 2004, 25(1):159-162. HOU Bo, QI Haiying, YOU Changfu, et al. New calcium-based sorbent used for medium temperature FGD process[J]. Journal of Engineering Thermophysics, 2004, 25(1):159-162.
[21] CHEN L, LI J, GE M. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chemical Engineering Journal, 2011, 170(2/3):531-537.
[22] KAMATA H, UENO S, NAITO T, et al. Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalyst[J]. Industrial & Engineering Chemistry Research, 2008, 47(21):8136-8141.
[23] 马双忱,金鑫,孙云雪,等. SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J]. 热力发电, 2010, 39(8):12-17. MA Shuangchen, JIN Xin, SUN Yunxue, et al. The formation mechanism of ammonium bisulfate in SCR flue gas denitrification process and control thereof[J]. Thermal Power Generation, 2010, 39(8):12-17.
[24] 纪培栋. SCR催化剂SO2氧化机理及调控机制研究[D]. 杭州:浙江大学, 2016. JI P D. Research of SO2 oxidation over SCR catalyst and regulatory mechanism[D]. Hangzhou:Zhejiang University, 2016.
[25] FORZATTI P. Environmental catalysis for stationary applications[J]. Catalysis Today, 2000, 62(1):51-65.
[26] LI P, LIU Q, LIU Z. Behaviors of NH4HSO4 in SCR of NO by NH3 over different cokes[J]. Chemical Engineering Journal, 2012, 181/182:169-173.
[27] 余岳溪,廖永进,束航,等. SO2与H2O对商用钒钨钛脱硝催化剂毒化作用综述[J]. 中国电力, 2016, 49(12):168-173. YU Yuexi, LIAO Yongjin, SHU Hang, et al. Review of SO2 and H2O poisoning over commercial vanadium-titanium catalysts in the selective catalytic reduction denitration[J]. Electric Power, 2016, 49(12):168-173.
[28] ALEMANY L J, LIETTI L, FERLAZZO N, et al. Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De-NOx catalysts[J]. Journal of Catalysis, 1995, 155(1):117-130.
[29] LIETTI L, NOVA I, RAMIS G, et al. Characterization and reactivity of V2O5-MoO3/TiO2 de-NOx SCR catalysts[J]. Journal of Catalysis, 1999, 187(2):419-435.
[30] GAO Y, LUAN T, LV T, et al. The Mo loading effect on thermo stability and SO2 oxidation of SCR catalyst[J]. Advanced Materials Research, 2012, 573/574:58-62.
[31] SAZONOVA N N, TSYKOZA L T, SIMAKOV A V, et al. Relationship between sulfur dioxide oxidation and selective catalytic NO reduction by ammonia on V2O5-TiO2 catalysts doped with WO3 and Nb2O5[J]. Reaction Kinetics & Catalysis Letters, 1994, 52(1):101-106.
[32] KOBAYASHI M, KUMA R, MORITA A. Low temperature selective catalytic reduction of NO by NH3 over V2O5 supported on TiO2-SiO2-MoO3[J]. Catalysis Letters, 2006, 112(1/2):37-44.
[33] DUNN J P, KOPPULA P R, STENGER H G, et al. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts[J]. Applied Catalysis B:Environmental, 1998, 19(2):103-117.
[34] CASTELLINO F, RASMUSSEN S B, JENSEN A D, et al. Deactivation of vanadia-based commercial SCR catalysts by polyphosphoric acids[J]. Applied Catalysis B:Environmental, 2008, 83(1):110-122.
[35] KAMATA H, TAKAHASHI K, ODENBRAND C U I. Surface acid property and its relation to SCR activity of phosphorus added to commercial V2O5(WO3)/TiO2 catalyst[J]. Catalysis Letters, 1998, 53(1/2):65-71.
[36] REN Z, FAN H, WANG R. A novel ring-like Fe2O3-based catalyst:tungstophosphoric acid modification, NH3-SCR activity and tolerance to H2O and SO2[J]. Catalysis Communications, 2017, 100:71-75.
[37] MORIKAWA S, YOSHIDA H, TAKAHASHI K, et al. Improvement of V2O5-TiO2 catalyst for NOx reduction with NH3 in flue gases[J]. Chemistry Letters, 1981(2):251-254.
[38] CHOO S T, YIM S D, NAM I S, et al. Effect of promoters including WO3 and BaO on the activity and durability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3[J]. Applied Catalysis B:Environmental, 2003, 44(3):237-252.
[39] KOBAYASHI M, KUMA R, MASAKI S, et al. TiO2-SiO2 and V2O5/TiO2-SiO2 catalyst:physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3[J]. Applied Catalysis B:Environmental, 2005, 60(3/4):173-179.
[40] 李锋,於承志,张朋,等. 低SO2氧化率脱硝催化剂的开发[J]. 电力科技与环保, 2010, 26(4):18-21. LI Feng, YU Chengzhi, ZHANG Peng, et al. Development of SCR DeNO x catalyst with low SO2 oxidation[J]. Electric Power Technology and Environmental Protection, 2010, 26(4):18-21.
[41] SCHWÄMMLE T, BERTSCHE F, HARTUNG A, et al. Influence of geometrical parameters of honeycomb commercial SCR-deNO x-catalysts on deNOx-activity, mercury oxidation and SO2/SO3-conversion[J]. Chemical Engineering Journal, 2013, 222(8):274-281.
[42] 胡永锋, 白永锋. SCR法烟气脱硝技术在火电厂的应用[J]. 节能技术, 2007, 25(2):152-156. HU Yongfeng, BAI Yongfeng. SCR flue gas denitration technology and its application[J]. Energy Conservation Technology, 2007, 25(2):152-156.
[43] 刘炜,孙奇峰,蒋宗安. 波纹式催化剂在NOx超低排放改造项目中的应用[J]. 工程技术:全文版, 2016(7):00200-00201. LIU Wei, SUN Qifeng, JIANG Zongan. Application of corrugated catalyst in the transformation project of NOx ultra-low emission[J]. Engineering Technology, 2016(7):00200-00201.
[44] TREFZGER C, DIFRANCESCO C E, OH R. Catalyst compositions and applications thereof:US20150079334[P]. 2015-03-19.
[45] NOVA I, DALL'ACQUA L, LIETTI L, et al. Study of thermal deactivation of a de-NO x commercial catalyst[J]. Applied Catalysis B:Environmental, 2002, 35(1):31-42.
[46] PHIL H H, REDDY M P, KUMAR P A, et al. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures[J]. Applied Catalysis B:Environmental, 2008, 78(3/4):301-308.
[47] XI Y, OTTINGER N A, LIU Z G. New insights into sulfur poisoning on a vanadia SCR catalyst under simulated diesel engine operating conditions[J]. Applied Catalysis B:Environmental, 2014, 160/161:1-9.
[48] 黄张根,朱珍平,刘振宇. 水对V2O5/AC催化剂低温还原NO的影响[J]. 催化学报, 2001, 22(6):532-536. HUANG Zhanggen, ZHU Zhenping, LIU Zhenyu. Effect of water on V2O5/AC catalyst for NO reduction by NH3 at lower temperature[J]. Chinese Journal of Catalysis, 2001, 22(6):532-536.
[49] YU J, GUO F, WANG Y, et al. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3[J]. Applied Catalysis B:Environmental, 2010, 95(1/2):160-168. |