[1] 王元元. 表面能在评价沥青与集料粘附性中的应用研究[D]. 重庆:重庆交通大学, 2012. WANG Y Y. Application research on adhesion between asphalt and aggregate based on surface energy theory[D]. Chongqing:Chongqing Jiaotong University, 2012.
[2] 陈燕娟, 高建明, 陈华鑫. 基于表面能理论的沥青-集料体系的粘附特性研究[J]. 东南大学学报(自然科学版), 2014, 44(1):183-187. CHEN Y J, GAO J M, CHEN H X. Research on adhesion in asphalt-aggregate systems based on surface energy theory[J]. Journal of Southeast University(Natural Science Edition), 2014, 44(1):183-187.
[3] 张越. 沥青与集料界面粘附性研究[D]. 西安:长安大学, 2014. ZHANG Y. Study on adhesion of interface between asphalt and aggregate[D]. Xi'an:Chang'an University, 2014.
[4] LI D D, GREENFIELD M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115(1):347-356.
[5] 交通部公路科学研究所. 公路沥青路面施工技术规范:JTG F40-2004[S]. 北京:人民交通出版社, 2004. Research Institute of Highway Ministry of Transport. Technical specification for construction of highway asphalt pavements:JTG F40-2004[S]. Beijing:China Communications Press, 2004.
[6] 梁文杰, 阙国和, 陈月珠. 我国原油减压渣油的化学组成与结构——Ⅱ. 减压渣油及其各组分的平均结构[J]. 石油学报(石油加工), 1991, 7(4):1-11. LIANG W J, QUE G H, CHEN Y Z. Chemical composition and structure of vacuum residues of Chinese crudes Ⅱ. Average structure of vacuum residues and their fractions[J]. Acta Petrolei Sinica (Petroleum Processing Section), 1991, 7(4):1-11.
[7] 丁勇杰. 基于分子模拟技术的沥青化学结构特征研究[D]. 重庆:重庆交通大学, 2013. DING Y J. Study on chemical structure characteristic of asphalt using molecular simulation[D]. Chongqing:Chongqing Jiaotong University, 2013.
[8] 徐力, 刘峰, 沈本贤, 等. 塔河沥青表征研究[J]. 化工科技, 2011, 19(4):44-46. XU L, LIU F, SHEN B X, et al. Characterization of Tahe asphalt[J]. Science & Technology in Chemical Industry, 2011, 19(4):44-46.
[9] 赵亮, 陈燕, 高金森, 等. 重质油分子化学结构分析及性质预测[J]. 分子科学学报, 2009, 25(5):311-315. ZHAO L, CHEN Y, GAO J S, et al. The chemical structure and properties analyses of heavy oil molecule[J]. Journal of Molecular Science, 2009, 25(5):311-315.
[10] EFFENBERGER H, KIRFEL A, WILL G. Untersuchungen zur elektronendichteverteilung im dolomit CaMg(CO3)2[J]. Tschermaks Mineralogische und Petrographische Mitteilungen, 1983, 31(1/2):151-164.
[11] NAIR N N, SCHREINER E, MARX D. Glycine at the pyrite -water interface:the role of surface defects[J]. Journal of the American Chemical Society, 2006, 128(42):13815-13826.
[12] LEEUW N H D, MKHONTO D. Computer simulation study of the effect of surface pre-relaxation on the adhesion of apatite thin films to the (0001) surface of α-Quartz[J]. Chemistry of Materials, 2003, 15(8):1567-1574.
[13] HARDING J H, DUFFY D M. The challenge of biominerals to simulations[J]. Journal of Materials Chemistry, 2006, 16(12):1105-1112.
[14] COOPER T G, LEEUW N H D. A computer modeling study of the competitive adsorption of water and organic surfactants at surfaces of the mineral scheelite[J]. Langmuir the ACS Journal of Surface & Colloids, 2004, 20(10):3984-3994.
[15] MKHONTO D, LEEUW N H D. A computer modelling study of the effect of water on the surface structure and morphology of fluorapatite:introducing a Ca10(PO4)6F2 potential model[J]. Journal of Materials Chemistry, 2002, 12(9):2633-2642.
[16] LEEUW N H D, COOPER T G. A computer modeling study of the inhibiting effect of organic adsorbates on calcite crystal growth[J]. Crystal Growth & Design, 2004, 4(1):123-133.
[17] 廖玉春, 王元元, 朱平. 表面能理论评价沥青与石料抗水毁性能的研究[J]. 公路工程, 2013, 38(3):222-225. LIAO Y C, WANG Y Y, ZHU P. Research on evaluating asphalt and stone moisture damage property based on surface energy theory[J]. Highway Engineering, 2013, 38(3):222-225.
[18] 叶勇, 周新星, 刘全涛. 细集料对钢渣沥青混合料粘附性的影响研究[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(3):423-427. YE Y, ZHOU X X, LIU Q T. Effect of fine aggregates on the adhesive properties of steel slag based asphalt mixtures[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2016, 40(3):423-427.
[19] 宋艳茹. 道路沥青粘附与粘结性能研究[D]. 青岛:中国石油大学(华东), 2011. SONG Y R. Investigation on adhesion and cohesion of pavement asphalt[D]. Qingdao:China University of Petroleum, 2011. |