[1] 金钦汉. 微波化学[M]. 北京:科学出版社,2001:1-254. JIN Qinhan. Microwave chemistry[M]. Beijing:Science Press,2001:1-254.
[2] 刘奇. 淀粉-AM-DADMAC接枝共聚物的微波合成与絮凝应用[D]. 武汉:武汉科技大学,2012. LIU Qi. Microwave synthesis and flocculation application of starch-AM-DADMAC graft copolymer[D]. Wuhan:Wuhan University of Science and Technology,2012.
[3] GEDYE R,SMITH F,WESTAWAY K,et al. The use of microwave-ovens for rapid organic-synthesis[J]. Tetrahedron Letters,1986,27(3):279-282.
[4] GIGUERE R J,BRAY T L,DUNCON S M,et al. Application of commerical microwave-ovens to organic synthesis[J]. Tetrahedron Letters,1986,27(41):4945-4948.
[5] LIDSTROM P,TIERNEY J,WATHEY B,et al. Microwave assisted organic synthesis:a review[J]. Tetrahedron,2005,57(45):9225-9283.
[6] 胡玉才,林洁,李敏,等,微波辐射对有机合成反应的促进作用[J]. 辐射研究与辐射工艺学报,2005,23(3):129-134. HU Y C,LIN J,LI M,et al. A review on organic reactions enhanced by microwave irradiation[J]. Journal of Radiation Research and Radiation Processing,2005,23(3):129-134.
[7] 于永丽,翟秀静,储刚, 等. 微波合成LiCoO2及其反应机理[J]. 硅酸盐学报,2005,33(3):362-365. YU Yongli,ZHAI Xiujing,CHU Gang,et al. Preparation of LiCoO2 by microwave synthesis and its reaction mechanism[J]. Journal of the Chinese Ceramic Society,2005,33(3):362-365.
[8] JUHASZ M A,MATHESON G R,CHANG P S,et al. Microwave-assisted iodination:synthesis of heavily iodinated 10-vertex and 12-vertex boron clusters[J]. Synthesis and Reactivity in Inorganic,Metal-Organic,and Nano-Metal Chemistry,2015,46(4):583-588.
[9] PATHAK A K,AMETA C,AMETA R,et al. Microwave-assisted organic synthesis in ionic liquids[J]. Journal of Heterocyclic Chemistry,2016,53(10):1697-1705.
[10] HU L B,WANG Y K,LI B N,et al. Diastereoselectivity in the staudinger reaction:a useful probe for investigation of nonthermal microwave effects[J]. Tetrahedron,2007,63(38):9387-9392.
[11] HOZ A,DIAZ-ORTIZ A,MORENO A,et al. Review on non-thermal effects of microwave irradiation in organic synthesis[J]. Journal of Microwave Power and Electromagnetic Energy,2007,41(1):44-64.
[12] DIAO Z L,WANG L Y,LI D S,et al. Efficacy of microwave ablation for severe secondary hyperparathyroidism in subjects undergoing hemodialysis[J]. Renal Failure,2016,39(1):140-145.
[13] WADA Y J. Application of microwave-driven chemistry to chemical syntheses and detoxification[J]. Journal of the Japan Institute of Energy,2005,84(6):480-485.
[14] HOZ A,DIAZ-ORTIZ A,MORENO A,et al. Microwaves in organic synthesis. Thermal and non-thermal microwave effects[J]. Chemical Society Reviews,2005,34(2):164-178.
[15] RAZZAQ T,KREMSNER J M,KAPPE C O. Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators[J]. Journal of Organic Chemistry,2008,73(16):6321-6329.
[16] SOUZA R D,ANTUNES O A,KROUTIL W,et al. Kinetic resolution of rac-1-phenylethanol with immobilized lipases:a critical comparison of microwave and conventional heating protocols[J]. Journal of Organic Chemistry,2009,74(16):6157-6162.
[17] KANNO M,NAKAMURA K,KANAI E,et al. Theoretical verification of nonthermal microwave effects on intramolecular reactions[J]. The Journal of Physical Chemistry,2012,116(9):2177-2183.
[18] KUHNERT N. Microwave-assisted reactions in organic synthesis——are there any nonthermal microwave effects?[J]. Angewandte Chemie International Edition,2002,41(19):1863-1866.
[19] HERRERO M A,KREMSNER J M,KAPPE C O. Nonthermal microwave effects revisited:on the importance of internal temperature monitoring and agitation in microwave chemistry[J]. Journal of Organic Chemistry,2008,73(1):36-47.
[20] SHIMIZU H,YOSHIMURA Y,HINOU H. A new glycosylation method part 3:study of microwave effects at low temperatures to control reaction pathways and reduce byproducts[J]. Tetrahedron,2008,64(43):10091-10096.
[21] 张林,李彦青,李利军,等. 微波作用下聚羧酸系高效减水剂的合成及其性能研究[J]. 新型建筑材料,2010,37(9):45-52. ZHANG Lin,LI Yanqing,LI Lijun,et al. Study on synthesis and properties of polycarboxylate superplasticizer under microwave irradiation[J]. New Building Materials,2010,37(9):45-52.
[22] REDDY P M,HUANG Y S,CHEN C T,et al. Evaluating the potential nonthermal microwave effects of microwave-assisted proteolytic reactions[J]. Journal of Proteomics,2013,80(6):160-170.
[23] KAPPE C O. Controlled microwave heating in modern organic synthesis[J]. Angewandte Chemie International Edition,2004,43(46):6250-6284.
[24] ZHANG X L,HAYWARD D O,MINGOS D M P. Effects of microwave dielectric heating on heterogeneous catalysis[J]. Catalysis Letters,2003,88(2):33-88.
[25] RANER K D,STRAUSS C R,TRAINOR R W. A new microwave reactor for batchwise organic-synthesis[J]. Journal of Organic Chemistry,1995,60(8):2456-2460.
[26] NILSSON P,LARHED M,HALLBERG A. Highly regioselective,sequential,and multiple palladium-catalyzed arylations of vinyl ethers carrying a coordinating auxiliary:an example of a Heck triarylation process[J]. Journal of the American Chemical Society,2001,123(34):8217-8225.
[27] BOGDAL D,LUKASIEWICZ M,PIELICHOWSKI J,et al. Microwave-assisted oxidation of alcohols using Magtrieve (TM)[J]. Tetrahedron,2003,59(5):649-653.
[28] POLLINGTON S D,BOND G,MOYES R B,et al. The influence of microwaves on the rate of reaction of propan-1-ol with ethanoic acid[J]. Journal of Organic Chemistry,1991,56(3):1313-1314.
[29] RANER K D,STRAUSS C R. Influence of mivrowaves on the rate of esterification of 2,4,6-trimethylbenzoic acid with 2-propal[J]. Journal of Organic Chemistry,1992,57:6231-6232.
[30] SUN W C,GUY P M,JAHNGEN J H,et al. Microwave-induced hydrolysis of phospho anhydride bonds in nucleotide triphosphates[J]. Journal of Organic Chemistry,1988,53(18):4414-4416.
[31] LOMBARD C K,MYERS K L,PLATT Z H,et al. Kinetics of reductive elimination from platinum(Ⅳ)as a probe for nonthermal effects in microwave-heated reactions[J]. Organometallics,2009,28(11):3303-3306.
[32] HERRERO M A,KREMSNER J M,KAPPE C O. Nonthermal microwave effects revisited:On the importance of internal temperature monitoring and agitation in microwave chemistry[J]. Journal of Organic Chemistry,2008,73(1):37-47.
[33] HOOGENBOOM R,SCHUBERT U S. Microwave-assisted polymer synthesis:recent developments in a rapidly expanding field of research[J]. Macromolecular Rapid Communications,2007,28(4):368-386.
[34] 马双忱,姚娟娟,金鑫,等. 微波化学中微波的热与非热效应研究进展[J]. 化学通报,2011,74(1):41-46. MA Shuangchen,YAO Juanjuan,JIN Xin,et al. Advances in thermal and nonthermal effects of microwave in microwave chemistry[J]. Chemical Bulletin,2011,74(1):41-46.
[35] MA J Y. Master equation analysis of thermal and nonthermal microwave effects[J]. The Journal of Physical Chemistry,2016,120(41):7989-7997.
[36] SHI H X,YIN Y Z,WANG A R,et al. Kinetic study of the nonthermal effect of the esterification of octenylsuccinic anhydride modified starch treated by microwave radiation[J]. Journal of Applied Polymer Science,2016,133(36):43909-43918.
[37] 倪春梅,盛凤军. 微波合成技术及在有机合成中的应用[J]. 广州化工,2004,32(2):11-14. NI Chunmei,SHENG Fengjun. Microwave synthesis technology and its application in organic synthesis[J].Guangzhou Chemical Industry,2004,32(2):11-14.
[38] 王栋民,张以河,李端乐. 工矿业精细化学品化学[M]. 北京:化学工业出版社,2013:1-370. WANG Dongmin,ZHANG Yihe,LI Duanle. Fine chemical chemicals in mining industry[M]. Beijing:Chemical Industry Press,2013:1-370.
[39] 王栋民,张力冉,张伟利,等. 超塑化剂对新拌水泥浆体多级絮凝结构的影响[J]. 建筑材料学报,2012,15(6):755-759. WANG Dongmin,ZHANG Liran,ZHANG Weili,et al. Effects of superplasticizer on multistage flocculation structure of fresh cement paste[J]. Journal of Building Materials,2012,15(6):755-759.
[40] TAYLOR H F W. Cement chemistry[M]. London:Thomas Telford Ltd.,1997:342-346.
[41] 郭登峰,刘红,刘准. 混凝土减水剂研究现状和进展[J]. 混凝土,2010,249(7):79-82. GUO Dengfeng,LIU Hong,LIU Zhun. Study on the status and development of concrete water reducing agent[J]. Concrete,2010,249(7):79-82.
[42] 陈建奎. 混凝土外加剂原理与应用[M]. 北京:中国计划出版社,2004:1-620. CHEN Jiankui. Principle and application of concrete admixture[M]. Beijing:China Planning Press,2004:1-620.
[43] 张力冉. 微波辅助合成聚羧酸超塑化剂性能/热-非热效应研究[D]. 北京:中国矿业大学(北京),2015. ZHANG Liran. Study on performance/thermal-nonthermal effect of polycarboxylate superplasticizer by microwave assisted synthesis[D]. Beijing:China University of Mining and Technology(Beijing),2015.
[44] 黄卡玛,刘永清,唐敬贤,等. 电磁波对化学反应非致热作用的实验研究[J]. 高等学校化学学报,1996,17(5):764-768. HUANG Kama,LIU Yongqing,TANG Jingxian,et al. Experimental study on the nonthermal effect of electromagnetic wave on chemical reaction[J]. Journal of Chemical Engineering of Chinese Universities,1996,17(5):764-768.
[45] 王栋民,房奎圳,张力冉,等. 酯类聚羧酸减水剂的微波制备与性能表征[J]. 建筑材料学报,2017,20(3):346-352. WANG Dongmin,FANG Kuizhen,ZHANG Liran,et al. Microwave preparation and characterization of polycarboxylate superplasticizer[J]. Journal of Building Materials,2017,20(3):346-352.
[46] 胡国栋,游长江,刘治猛,等. 聚羧酸系高效减水剂酯化反应动力学的研究[J]. 化学建材,2003,4:38-40. HU Guodong,YOU Changjiang,LIU Zhimeng,et al. Studies on the kinetics of esterification of polycarboxylate superplasticizer[J]. Chemical Building Materials,2003,4:38-40.
[47] 王飞镝,王凌伟,郭宝春,等. 酯化制备马来酸酐系减水剂的研究[J]. 新型建筑材料,2010,6:11-14. WANG Feiwei,WANG Lingwei,GUO Baochun,et al. Study on preparation of maleic anhydride water reducing agent by esterification[J]. New Building Materials,2010,6:11-14.
[48] 肖衍繁,李文斌. 物理化学[M]. 天津:天津大学出版社,2004:1-484. XIAO Yanfan,LI Wenbin. Physical chemistry[M]. Tianjin:Tianjin University Press,2004:1-484.
[49] ADAM D. Microwave chemistry:out of the kitchen[J]. Nature,2003,421(6922):571-572.
[50] KAPPE C. Reply to the corres pondence on microwave effects in organic synthesis[J]. 2013,52(31):7924-7928.
[51] Rathi A K,Gawande M B,Zboril R,et al. Microwave-assisted synthesis-catalytic applications in aqueous media[J]. Coordination Chemistry Reviews,2015,291:68-94.
[52] 刘潮霞. 微波-H2O2耦合活化草浆碱木素减水剂合成与性能研究[D]. 哈尔滨:东北林业大学,2008. LIU Chaoxia. Study on synthesis and properties of alkali-lignin-based water-reducing agent with microwave-H2O2 coupled activated grass[J]. Harbin:Northeast Forestry University,2008.
[53] 李彦青,李利军,蔡卓,等. 微波作用下脂肪族高效减水剂的合成及其性能研究[J]. 新型建筑材料,2008,9:35-38. LI Yanqing,LI Lijun,CAI Zhuo,et al. Study on synthesis and properties of aliphatic superplasticizer under microwave irradiation[J]. New Building Materials,2008,9:35-38.
[54] 尚海萍,周雅文,崔明虎,等. 三聚氰胺高效减水剂的微波合成与性能评价[J]. 杭州化工,2009,39(3):20-30. SHANG Haiping,ZHOU Yawen,CUI Minghu,et al. Microwave synthesis and performance evaluation of melamine superplasticizer[J]. Hangzhou Chemical Industry,2009,39(3):20-30.
[55] 李利军,李彦青,程昊,等. 微波作用下氨基磺酸系高效减水剂的合成及其性能研究[J]. 混凝土,2008,230(12):45-53. LI Lijun,LI Yanqing,CHENG Hao,et al. Studies on the synthesis and properties of sulfamate-based superplasticizer under microwave action[J]. Concrete,2008,230(12):45-53.
[56] 罗应,李彦青,陆志龙,等. 响应面法优化微波辐射马来酸酐高效减水剂的合成工艺[J]. 新型建筑材料,2017(2):15-19. LUO Ying,LI Yanqing,LU Zhilong,et al. Optimization of synthesis of maleic anhydride superplasticizer by response surface methodology[J]. New Building Materials,2017(2):15-19.
[57] 米海涛,魏睿新. 微波辅助合成聚羧酸减水剂及其性能研究[C]//中国化学外加剂及矿物外加剂研究与应用新进展. 北京:中国建材工业出版社,2016:117-121. MI Haitao,WEI Ruixin. Study on microwave assisted synthesis of polycarboxylate water reducing agent and its performance[C]//New progress in research and application of chemical admixtures and mineral admixtures in China. Beijing:China Building Materials Industry Press,2016:117-121.
[58] 张林,李彦青,李利军,等. 微波作用下聚羧酸系高效减水剂的合成及其性能研究[J]. 新型建筑材料,2010(9):46-52. ZHANG Lin,LI Yanqing,LI Lijun,et al. Study on synthesis and properties of polycarboxylate superplasticizer under microwave irradiation[J]. New Building Materials,2010(9):46-52. |