[1] MALOLA S,SVELLE S,BLEKEN F L,et al. Detailed reaction paths for zeolite dealumination and desilication from density functional calculations[J]. Angewandte Chemie International Edition,2012,51:652-655.
[2] ARAMBURO L R,SMIT E D,ARSTAD B,et al. X-ray imaging of zeolite particles at the nanoscale:influence of steaming on the state of aluminum and the methanol-to-olefin reaction[J]. Angewandte Chemie International Edition,2012,51:3616-3619.
[3] JAVAID R,URATA K,FURUKAWA S,et al. Factors affecting coke formation on H-ZSM-5 in naphtha cracking[J]. Applied Catalysis A:General,2015,491:100-105.
[4] JI Y J,YANG H H,ZHANG Q,et al. Phosphorus modification increases catalytic activity and stability of ZSM-5 zeolite on supercritical catalytic cracking of n-dodecane[J]. Journal of Solid State Chemistry,2017,251:7-13.
[5] JI Y J,SHI B F,YANG H H,et al. Synthesis of isomorphous MFI nanosheet zeolites for supercritical catalytic cracking of n-dodecane[J]. Applied Catalysis A:General,2017,533:90-98.
[6] FURUMOTO Y,HARADA Y,TSUNOJI N,et al. Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene[J]. Applied Catalysis A:General,2011,399(1/2):262-267.
[7] MINTOVA S,JABER M,VALTCHEV V. Nanosized microporous crystals:emerging applications[J]. Chem. Soc. Rev.,2015,44(20):7207-7233.
[8] NAKASAKA Y,NISHIMURA J I,TAGO T,et al. Deactivation mechanism of MFI-type zeolites by coke formation during n-hexane cracking[J]. Chemical Engineering Journal,2015,278:159-165.
[9] HARTMANN M. Hierarchical zeolites:a proven strategy to combine shape selectivity with efficient mass transport[J]. Angewandte Chemie International Edition,2004,43:5880-5882.
[10] 崔生航,张君涛,申志兵. 多级孔道ZSM-5分子筛的合成及其催化应用[J]. 化工进展,2015,34(9):3311-3336. CUI S H,ZHANG J T,SHEN Z B. Hierarchical ZSM-5 zeolite:synthesis and catalytic applications[J]. Chemical Industry and Engineering Progress,2015,34(9):3311-3336.
[11] 严丽霞,虞贤波,王靖岱,等. 多级孔道沸石用于甲醇制丙烯反应研究进展[J]. 化工进展,2011,30(9):1873-1877. YAN L X,YU X B,WANG J D,et al. Research progress of hierarchical zeolites for methanol to propylene reaction[J]. Chemical Industry and Engineering Progress,2011,30(9):1873-1877.
[12] 成尚元,刘有智,祁贵生. 超重力技术制备多级孔ZSM-5分子筛[J]. 化工进展,2017,36(2):588-594. CHENG S Y,LIU Y Z,QI G S. Synthesis of hierarchical ZSM-5 zeolite by high gravity technology[J]. Chemical Industry and Engineering Progress,2017,36(2):588-594.
[13] YIN C,FENG L,NI R,et al. One-pot synthesis of hierarchically nanoporous ZSM-5 for catalytic cracking[J]. Powder Technology,2014,253:10-13.
[14] KARLSSON A,STÖCKER M,SCHMIDT R. Composites of micro-and mesoporous materials:simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach[J]. Microporous and Mesoporous Materials,1999,27:181-192.
[15] EMDADI L,OH S C,WU Y,et al. The role of external acidity of meso-/microporous zeolites in determining selectivity for acid-catalyzed reactions of benzyl alcohol[J]. Journal of Catalysis,2016,335:165-174.
[16] ZHOU J,HUA Z,LIU Z,et al. Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties[J]. ACS Catalysis,2011,1(4):287-291.
[17] JACOBSEN C J H,MADSEN C,HOUZVICKA J,et al. Mesoporous zeolite single crystals[J]. Journal of the American Chemical Society,2000,122:7116-7117.
[18] CHAL R,RARDIN C G,BULUT M,et al. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores[J]. Chemical Catalyst and Chemistry,2011,3:67-81.
[19] WANG J,YUE W,ZHOU W,et al. TUD-C:a tunable,hierarchically structured mesoporous zeolite composite[J]. Microporous and Mesoporous Materials,2009,120(1/2):19-28.
[20] WANG J,GROEN J C,YUE W B,et al. Single-template synthesis of zeolite ZSM-5 composites with tunable mesoporosity[J]. Chemical Communications,2007,44:4653-4655.
[21] NANDAN D,SAXENA S K,VISWANADHAM N. Synthesis of hierarchical ZSM-5 using glucose as a templating precursor[J]. Journal of Materials Chemistry A,2013,2(4):1054-1059.
[22] LI J,LI X,ZHOU G,et al. Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions[J]. Applied Catalysis A:General,2014,470:115-122.
[23] BLEKEN F L,BARBERA K,BONINO F,et al. Catalyst deactivation by coke formation in microporous and desilicated zeolite H-ZSM-5 during the conversion of methanol to hydrocarbons[J]. Journal of Catalysis,2013,307:62-73.
[24] GROEN J C,MOULIJN J A,PEREZ-RAMIREZ J. Desilication:on the controlled generation of mesoporosity in MFI zeolites[J]. Journal of Materials Chemistry,2006,16(22):2121-2131.
[25] ABELLÓ S,BONILLA A,PÉREZ-RAMÍREZ J. Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching[J]. Applied Catalysis A:General,2009,364(1/2):191-198.
[26] PÉREZ-RAMIREZ J,CHRISTENSEN C H,EGEBLAD K,et al. Hierarchical zeolites:enhanced utilisation of microporous crystals in catalysis by advances in materials design[J]. Chemical Society Reviews,2008,37(11):2530-2542.
[27] QIN Z,LAKISS L,GILSON J P,et al. Chemical equilibrium controlled etching of MFI-type zeolite and its influence on zeolite structure,acidity,and catalytic activity[J]. Chemistry of Materials,2013,25(14):2759-2766.
[28] FODOR D,KRUMEICH F,HAUERT R,et al. Differences between individual ZSM-5 crystals in forming hollow single crystals and mesopores during base leaching[J]. Chemistry,2015,21(16):6272-6277.
[29] DAI C,ZHANG A,LIU M,et al. Hollow ZSM-5 with silicon-rich surface,double shells,and functionalized interior with metallic nanoparticles and carbon nanotubes[J]. Advanced Functional Materials,2015,25(48):7479-7487.
[30] DIAO Z,WANG L,ZHANG X,et al. Catalytic cracking of supercritical n-dodecane over meso-HZSM-5@Al-MCM-41 zeolites[J]. Chemical Engineering Science,2015,135:452-460.
[31] VU X H,NGUYEN S,DANG T T,et al. Catalytic cracking of triglyceride-rich biomass toward lower olefins over a nano-ZSM-5/SBA-15 analog composite[J]. Catalysts,2015,5(4):1692-1703.
[32] INAGAKI S,SHINODA S,KANEKO Y,et al. Facile fabrication of ZSM?5 zeolite catalyst with high durability to coke formation during catalytic cracking of paraffins[J]. ACS Catalysis,2012,3:74-78.
[33] MOCHIZUKI H,YOKOI T,IMAI H,et al. Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking[J]. Applied Catalysis A:General,2012,449:188-197.
[34] 刘芝平,张嫱嫱,赵贺,等. C7碳氢化合物在纳米级介孔ZSM-5沸石中的扩散性能[J]. 化工进展,2014,33(10):2711-2721. LIU Z P,ZHANG Q Q,ZHAO H,et al. Diffusion of C7 hydrocarbons in nanoporous ZSM-5 materials[J]. Chemical Industry and Engineering Progress,2014,33(10):2711-2721.
[35] 姜健准,张明森,柯丽,等. 超细ZSM-5分子筛的制备及其形貌表征[J]. 化工进展,2012,31(9):1980-1984. JIANG J Z,ZHANG M S,KE L,et al. Synthesis and characterization of ultra-fine ZSM-5 zeolite[J]. Chemical Industry and Engineering Progress,2012,31(9):1980-1984.
[36] MINTOVA S,GILSON J P,VALTCHEV V. Advances in nanosized zeolites[J]. Nanoscale,2013,5(15):6693-6703.
[37] MOCHIZUKI H,YOKOI T,IMAI H,et al. Facile control of crystallite size of ZSM-5 catalyst for cracking of hexane[J]. Microporous and Mesoporous Materials,2011,145(1/2/3):165-171.
[38] URATA K,FURUKAWA S,KOMATSU T. Location of coke on H-ZSM-5 zeolite formed in the cracking of n-hexane[J]. Applied Catalysis A:General,2014,475:335-340.
[39] XUE H,HUANG X,DITZEL E,et al. Coking on micrometer-and nanometer-sized mordenite during dimethyl ether carbonylation to methyl acetate[J]. Chinese Journal of Catalysis,2013,34(8):1496-1503.
[40] LAKISS L,NGOYE F,CANAFF C,et al. On the remarkable resistance to coke formation of nanometer-sized and hierarchical MFI zeolites during ethanol to hydrocarbons transformation[J]. Journal of Catalysis,2015,328:165-172.
[41] ROSILDA S,CHIANG A S T. Some observations on the synthesis of fully-dispersible nanocrystalline zeolite ZSM-5[J]. Journal of Nanoscience and Nanotechnology,2014,14(9):7351-7359.
[42] SHI L,WANG J,LI N,et al. Direct synthesis of monolithic nano-sized ZSM-5 aggregates possessing ordered mesoporosity by controlling arrangement of nanoparticles[J]. Journal of Alloys and Compounds,2017,695:2488-2498.
[43] INAGAKI S,SHINODA S,HAYASHI S,et al. Improvement in the catalytic properties of ZSM-5 zeolite nanoparticles via mechanochemical and chemical modifications[J]. Catalysis Science & Technology,2016,6(8):2598-2604.
[44] WAKIHARA T,SATO K,INAGAKI S,et al. Fabrication of fine zeolite with improved catalytic properties by bead milling and alkali treatment[J]. ACS Applied Materials & Interfaces,2010,2(10):2715-2718.
[45] CHOI M,NA K,KIM J,et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature,2009,461(7261):246-249.
[46] NA K,JO C,KIM J,et al. Directing zeolite structures into hierarchically nanoporous architectures[J]. Science,2011,333:328-332.
[47] ZHU X,WU L,MAGUSIN P C M M,et al. On the synthesis of highly acidic nanolayered ZSM-5[J]. Journal of Catalysis,2015,327:10-21.
[48] XU D,MA Y,JING Z,et al. π-π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets[J]. Nature Communication,2014,5:4262.
[49] RANI P,SRIVASTAVA R,SATPATI B. One-step dual template mediated synthesis of nanocrystalline zeolites of different framework structures[J]. Crystal Growth & Design,2016,16(6):3323-3333.
[50] ZHANG X,LIU D,XU D,et al. Synthesis of self-pillared zeolite nanosheets by repetitive branching[J]. Science,2012,336(6089):1684-1687.
[51] XU D,SWINDLEHURST G R,WU H,et al. On the synthesis and adsorption properties of single-unit-cell hierarchical zeolites made by rotational Intergrowths[J]. Advanced Functional Materials,2014,24(2):201-208.
[52] LIU B,ZHENG L,ZHU Z,et al. Effect of synthesis conditions on the structural and catalytic properties of hierarchically structured ZSM-5 zeolites[J]. RSC Advances,2014,4(27):13831.
[53] BLASCO T,CORMA A,MARTINEZTRIGUERO J. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition[J]. Journal of Catalysis,2006,237(2):267-277.
[54] HODALA J L,HALGERI A B,SHANBHAG G V. Phosphate modified ZSM-5 for the shape-selective synthesis of para-diethylbenzene:role of crystal size and acidity[J]. Applied Catalysis A:General,2014,484:8-16.
[55] LI J,LI T,MA H,et al. Effect of impregnating Fe into P-modified HZSM-5 in the coupling cracking of butene and pentene[J]. Industrial & Engineering Chemistry Research,2015,54(6):1796-1805.
[56] DING J,WANG M,PENG L,et al. Combined desilication and phosphorus modification for high-silica ZSM-5 zeolite with related study of hydrocarbon cracking performance[J]. Applied Catalysis A:General,2015,503:147-155.
[57] SONG Z,TAKAHASHI A,NAKAMURA I,et al. Phosphorus-modified ZSM-5 for conversion of ethanol to propylene[J]. Applied Catalysis A:General,2010,384(1/2):201-205.
[58] ZHAO G,TENG J,XIE Z,et al. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene[J]. Journal of Catalysis,2007,248(1):29-37.
[59] LEE J,HONG U G,HWANG S,et al. Catalytic cracking of C5 raffinate to light olefins over lanthanum-containing phosphorous-modified porous ZSM-5:effect of lanthanum content[J]. Fuel Processing Technology,2013,109:189-195.
[60] KIM S,SASMAZ E,LAUTERBACH J. Effect of Pt and Gd on coke formation and regeneration during JP-8 cracking over ZSM-5 catalysts[J]. Applied Catalysis B:Environmental,2015,168/169:212-219. |