[1] 刘刚,沈镭. 中国生物质能源的定量评价及其地理分布[J]. 自然资源学报,2007(1):9-19. [2] 陆强,朱锡锋,李全新,等. 生物质快速热解制备液体燃料[J]. 化学进展,2007(s2):1064-1071. [3] HUBER G W,IBORRA S,CORMA A. Synthesis of transportation fuels from biomass:chemistry,catalysts,and engineering[J]. Chemical Revews,2006,106(9):4044-4098. [4] International Energy Outlook. World petroleum and other liquid fuels[R]. Washington:Energy Information Administration,2013. [5] AKHTAR J,AMIN N A S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass [J]. Renewable and Sustainable Energy Reviews,2011,15(3):1615-1624. [6] KRUSE A,DINJUS E. Hot compressed water as reaction medium and reactant:properties and synthesis reactions [J]. The Journal of Supercritical Fluids,2007,39(3):362-380. [7] YU Y,LOU X,WU H. Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods[J]. Energy & Fuels,2008,22(1):46-60. [8] TOOR S S,ROSENDAHL L,RUDOLF A. Hydrothermal liquefaction of biomass:a review of subcritical water technologies[J]. Energy,2011,36(5):2328-2342. [9] CANTERO D A,BERMEJO M D,COCERO M J. Kinetic analysis of cellulose depolymerization reactions in near critical water [J]. The Journal of Supercritical Fluids,2013:48-57. [10] SASAKI M,ADSCHIRI T,ARAI K. Kinetics of cellulose conversion at 25 MPa in sub- and supercritical water[J]. AIChE Journal,2004,50(1):192-202. [11] SASAKI M,FANG Z,FUKUSHIMA Y,et al. Dissolution and hydrolysis of cellulose in subcritical and supercritical water[J]. Industrial & Engineering Chemistry Research,2000,39(8):2883-2890. [12] SASAKI M,KABYEMELA B,MALALUAN R,et al. Cellulose hydrolysis in subcritical and supercritical water [J]. The Journal of Supercritical Fluids,1998,13(1/2/3):261-268. [13] MATSUMURA Y,SASAKI M,OKUDA K,et al. Supercritical water treatment of biomass for energy and material recovery[J]. Combustion Science and Technology,2006,178(1):509-536. [14] YIN S,TAN Z. Hydrothermal liquefaction of cellulose to bio-oil under acidic,neutral and alkaline conditions [J]. Applied Energy,2012,92:234-239. [15] KRUSE A,GAWLIK A. Biomass conversion in water at 330-410℃ and 30—50MPa. Identification of key compounds for indicating different chemical reaction pathways[J]. Industrial & Engineering Chemistry Research,2003,42(2):267-279. [16] YU-WU Q M,WEISS-HORTALA E,BARNA R. Hydrothermal conversion of glucose in multiscale batch processes:analysis of the gas,liquid and solid residues [J]. The Journal of Supercritical Fluids,2013,79:76-83. [17] BARBIER J,CHARON N,DUPASSIEUX N,et al. Hydrothermal conversion of glucose in a batch reactor. A detailed study of an experimental key-parameter:the heating time[J]. The Journal of Supercritical Fluids,2011,58(1):114-120. [18] CATALLO W J,SHUPE T F,COMEAUX J L,et al. Transformation of glucose to volatile and semi-volatile products in hydrothermal (HT) systems [J]. Biomass and Bioenergy,2010,34(1):1-13. [19] SINAG A,KRUSE A,SCHWARZKOPF V. Formation and degradation pathways of intermediate products formed during the hydropyrolysis of glucose as a model substance for wet biomass in a tubular reactor[J]. Engineering in Life Sciences,2003,3(12):469-473. [20] BOBLETER O. Hydrothermal degradation of polymers derived from plants[J]. Progress in Polymer Science,1994,19(5):797-841. [21] MOK W S L,ANTAL M J. Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water[J]. Industrial & Engineering Chemistry Research,1992,31(4):1157-1161. [22] AIDA T M,SHIRAISHI N,KUBO M,et al. Reaction kinetics of d-xylose in sub- and supercritical water [J]. The Journal of Supercritical Fluids,2010,55(1):208-216. [23] SROKOL Z,BOUCHE A G,VAN ESTRIK A,et al. Hydrothermal upgrading of biomass to biofuel,studies on some monosaccharide model compounds[J]. Carbohydrate Research,2004,339(10):1717-1726. [24] JING Q,LÜ X. Kinetics of non-catalyzed decomposition of d-xylose in high temperature liquid water[J]. Chinese Journal of Chemical Engineering,2007,15(5):666-669. [25] 陆强. 生物质选择性热解液化的研究[D]. 合肥:中国科学技术大学,2010. [26] 于光. 木化生物质的加氢液化[D]. 青岛:青岛科技大学,2010. [27] 隋鑫金. 工业木质素催化液化制备酚类化学品的研究[D]. 广州:华南理工大学,2011. [28] BARBIER J,CHARON N,DUPASSIEUX N,et al. Hydrothermal conversion of lignin compounds:a detailed study of fragmentation and condensation reaction pathways [J]. Biomass and Bioenergy,2012,46:479-491. [29] KANETAKE W T,SASAKI M,GOTO M. Decomposition of a lignin model compound under hydrothermal conditions[J]. Chemical Engineering & Technology,2007,30(8):1113-1122. [30] LIU A,PARK Y,HUANG Z,et al. Product identification and distribution from hydrothermal conversion of walnut shells[J]. Energy & Fuels,2006,20(2):446-454. [31] ZHANG B,VON KEITZ M,VALENTAS K. Thermal effects on hydrothermal biomass liquefaction[J]. Applied Biochemistry and Biotechnology,2008,147(1-3):143-150. [32] ZHANG B,VON KEITZ M,VALENTAS K. Thermochemical liquefaction of high-diversity grassland perennials [J]. Journal of Analytical and Applied Pyrolysis,2009,84(1):18-24. [33] KARAGÖZ S,BHASKAR T,MUTO A,et al. Comparative studies of oil compositions produced from sawdust,rice husk,lignin and cellulose by hydrothermal treatment[J]. Fuel,2005,84(7/8):875-884. [34] BHASKAR T,SERA A,MUTO A,et al. Hydrothermal upgrading of wood biomass:influence of the addition of K2CO3 and cellulose/lignin ratio [J]. Fuel,2008,87(10/11):2236-2242. [35] ZHONG C,WEI X. A comparative experimental study on the liquefaction of wood [J]. Energy,2004,29(11):1731-1741. [36] QU Y,WEI X,ZHONG C. Experimental study on the direct liquefaction of Cunninghamia lanceolata in water [J]. Energy,2003,28(7):597-606. [37] SHUI H,JIANG Q,CAI Z,et al. Co-liquefaction of rice straw and coal using different catalysts[J]. Fuel,2013,109:9-13. [38] LI L,YOU Q,WU S,et al. Co-liquefaction behavior of corn straw and Shengli lignite[J]. Journal of the Energy Institute,2015. DOI:10.1016/j.joei1025.03.006. [39] GAI C,LI Y,PENG N,et al. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water[J]. Bioresource Technology,2015,185:240-245. [40] YAKABOYLU O,HARINCK J,SMIT K G,et al. Testing the constrained equilibrium method for the modeling of supercritical water gasification of biomass[J]. Fuel Processing Technology,2015,138:74-85. [41] MOSTEIRO-ROMERO M,VOGEL F,WOKAUN A. Liquefaction of wood in hot compressed water Part 2—modeling of particle dissolution[J]. Chemical Engineering Science,2014,109:220-235. [42] ZHANG Z. Computational fluid dynamics modeling of a continuous tubular hydrothermal liquefaction reactor[D]. Urbana: University of Illinois at Urbana-Champaign,2013. [43] SHARMA B,INGALLS R G,JONES C L,et al. Biomass supply chain design and analysis:basis,overview,modeling,challenges,and future[J]. Renewable and Sustainable Energy Reviews,2013,24:608-627. [44] SINGH R,PRAKASH A,BALAGURUMURTHY B,et al. Chapter 10—hydrothermal liquefaction of biomass[M]// Recent Advances in Thermo-Chemical Conversion of Biomass,Sukumaran A P B S. Boston:Elsevier,2015,269-291. [45] ELLIOTT D C,BILLER P,ROSS A B,et al. Hydrothermal liquefaction of biomass:developments from batch to continuous process[J]. Bioresource Technology,2015,178:147-156. [46] BENSAID S,CONTI R,FINO D. Direct liquefaction of ligno-cellulosic residues for liquid fuel production[J]. Fuel,2012,94:324-332. [47] SINGH R,BHASKAR T,BALAGURUMURTHY B. Chapter 11— hydrothermal upgradation of algae into value-added hydrocarbons[M]//Biofuels from Algae,Soccol A P L C. Amsterdam:Elsevier,2014:235-260. [48] CANTERO D A,DOLORES BERMEJO M,José Cocero M. Reaction engineering for process intensification of supercritical water biomass refining[J]. The Journal of Supercritical Fluids,2015,96(1):21-35. [49] WAHYUDIONO,SASAKI M,GOTO M. Conversion of biomass model compound under hydrothermal conditions using batch reactor[J]. Fuel,2009,88(9):1656-1664. [50] TANG X,WANG S,QIAN L,et al. Corrosion behavior of nickel base alloys,stainless steel and titanium alloy in supercritical water containing chloride,phosphate and oxygen[J]. Chemical Engineering Research and Design,2015,100:530-541. [51] KARIMI K,KHERADMANDINIA S,TAHERZADEH M J. Conversion of rice straw to sugars by dilute-acid hydrolysis[J]. Biomass and Bioenergy,2006,30(3):247-253. [52] SINGH R,BALAGURUMURTHY B,PRAKASH A,et al. Catalytic hydrothermal liquefaction of water hyacinth[J]. Bioresource Technology,2015,178:157-165. [53] KUMAR S,GUPTA R B. Biocrude production from switchgrass using subcritical water[J]. Energy & Fuels,2009,23(10):5151-5159. [54] ZHANG Z,ZHAO Z K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid[J]. Bioresource Technology,2010,101(3):1111-1114. [55] LI C,ZHANG Z,ZHAO Z K. Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation[J]. Tetrahedron Letters,2009,50(38):5403-5405. [56] TUNGAL R,SHENDE R. Subcritical aqueous phase reforming of wastepaper for biocrude and H[J]. Energy & Fuels,2013,27(6):3194-3203. [57] TUNGAL R,SHENDE R V. Hydrothermal liquefaction of pinewood (Pinus ponderosa) for H2,biocrude and bio-oil generation[J]. Applied Energy,2014,134:401-412. [58] ZHANG S,JIN F,HU J,et al. Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions[J]. Bioresource Technology,2011,102(2):1998-2003. [59] SUN P,HENG M,SUN S,et al. Direct liquefaction of paulownia in hot compressed water:influence of catalysts[J]. Energy,2010,35(12):5421-5429. [60] TEKIN K,KARAGÖZ S,BEKTAŞ S. Hydrothermal liquefaction of beech wood using a natural calcium borate mineral[J]. The Journal of Supercritical Fluids,2012,72:134-139. [61] 王立华,袁兴中,曾光明,等. 生物质水热法催化液化的实验研究[J]. 太阳能学报,2009,30(8):1134-1138. [62] CHEN Y,WANG F,YANG Z. Preparation and upgrading of hydrocarbon oil from deoxy-liquefaction of oil crop[J]. Bioresource Technology,2013,146:472-477. [63] PEREGO C,BIANCHI D. Biomass upgrading through acid-base catalysis[J]. Chemical Engineering Journal,2010,161(3):314-322. [64] MASTRAL J F,BERRUECO C,GEA M,et al. Catalytic degradation of high density polyethylene over nanocrystalline HZSM-5 zeolite [J]. Polymer Degradation And Stability,2006,91(12):3330-3338. [65] XU J,JIANG J,DAI W,et al. Liquefaction of sawdust in hot compressed ethanol for the production of bio-oils[J]. Process Safety and Environmental Protection,2012,90(4):333-338. [66] MURANAKA Y,IWAI A,HASEGAWA I,et al. Selective production of valuable chemicals from biomass by two-step conversion combining pre-oxidation and hydrothermal degradation [J]. Chemical Engineering Journal,2013,234:189-194. [67] ROMAN-LESHKOV Y,CHHEDA J N,DUMESIC J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science,2006,312(5782):1933-1937. |