化工进展 ›› 2017, Vol. 36 ›› Issue (S1): 442-448.DOI: 10.16085/j.issn.1000-6613.2016-2392
许静, 段钰锋, 姚婷, 刘猛
收稿日期:
2016-12-26
修回日期:
2017-03-19
出版日期:
2017-12-31
发布日期:
2017-12-13
通讯作者:
段钰锋,教授,博士生导师,研究方向为洁净煤发电和大气污染控制。
作者简介:
许静(1992-),女,硕士研究生,研究方向为燃煤大气污染物控制。E-mail:220140360@seu.edu.cn。
基金资助:
XU Jing, DUAN Yufeng, YAO Ting, LIU Meng
Received:
2016-12-26
Revised:
2017-03-19
Online:
2017-12-31
Published:
2017-12-13
摘要: 现有的脱汞技术中,在烟道中利用吸附剂将烟气中的汞吸附脱除是综合实际因素考虑最具有发展潜力的一项脱汞技术,为了实现燃煤电厂脱汞技术的环保性和经济性,对可再生脱汞吸附剂的研究十分有必要。本文介绍了脱汞吸附剂的研究现状,卤素改性吸附剂、贵金属改性吸附剂、金属氧化物吸附剂和金属硫化物吸附剂对汞脱除均取得了显著的效果,金属氧化物吸附剂由于其经济性和良好的可再生性是现在可再生吸附剂的研究重点;同时简述了可再生脱汞吸附剂再生方法,有研究学者用热再生法、低温等离子再生法及水洗再生法对脱汞吸附剂进行了再生处理均取得了较好的再生效果,热再生法是目前研究最多、应用最广泛的再生方法,而低温等离子再生法具有环保性和节能性是一项具有前景的再生技术。
中图分类号:
许静, 段钰锋, 姚婷, 刘猛. 可再生脱汞吸附剂的研究进展[J]. 化工进展, 2017, 36(S1): 442-448.
XU Jing, DUAN Yufeng, YAO Ting, LIU Meng. Research progress on regenerable mercury sorbents[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 442-448.
[1] 国家统计局能源统计司.中国能源统计年鉴2015[M].北京:中国统计出版社,2015.Department of Energy Statistics,National Bureau of Statistics,People's Republic of China. China Energy Statistical Yearbook 2015[M].Beijing:China Statistics Press,2015. [2] British Petroleum Company Plc.. BP statistical review of world energy 2014[R].London:British Petroleum Plc.,2014. [3] 国家发展和改革委员会.煤炭工业发展的"十二五"规划[R].北京:国家能源局,2012.National Development and Reform Commission. The 12th five-year plan coal industry[R].Beijing:National Energy Board,2012. [4] AKERS D J,RALEIGH C E. The mechanisms of trace element removal during coal cleaning[J].Coal Preparation,1998,19(3/4):257-269. [5] WANG M,KEENER T C,KHANG S J. The effects of coal volatility on mercury removal from bituminous coal during mild pyrolysis[J].Fuel Processing Technology,2000,67(2):147-161. [6] 赵毅,薛方明,董丽彦,等.燃煤锅炉烟气脱汞技术研究进展[J].热力发电,2013,42(1):9-14.ZHAO Y,XUE F M,DONG L Y,et al. Flue gas mercury removal technology for coal-fired boiler[J].Thermal Power Generation,2013,42(1):9-14. [7] ZHUANG Y,THOMPSON J S,ZYGARLICKE C J,et al. Impact of calcium chloride addition on mercury transformations and control in coal flue gas[J].Fuel,2007,86(15):2351-2359. [8] DOMBROWSKI K,MCDOWELL S,BERRY M,et al. The balance-of-plant impact of calcium bromide injection as a mercury oxidation technology in power plants[C]//A & WMA Mega Symposium,2008:Baltimore MD,USA. [9] PAVLISH J H,SONDREAL E A,MANN M D,et al. Status review of mercury control options forcoal-fired power plants[J].Fuel Processing Technology,2003,82(2/3):89-165. [10] ZHAO L L,ROCHELLE G T. Mercury absorption in aqueous oxidants catalyzed by mercury (Ⅱ)[J].Industrial & Engineering Chemistry Research,1998,37(2):380-387. [11] LAUDAL D L,BROWN T D,NOTT B R. Effects of flue gas constituents on mercury speciation[J].Fuel Processing Technology,2000,65/66:157-165. [12] WANG Z H,ZHOU J H,ZHU Y Q,et al. Simultaneous removal of NOx,SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection[J].Fuel Processing Technology,2007,88(8):817-823. [13] LIBERTI L,NOTARNICOLA M,AMICARELLI V,et al. Mercury removal with powdered activated carbon from flue gas at the Coriano municipal solid waste incineration[J].Waste Management & Research,1998,16(2):183-189. [14] GRAYDON J W, ZHANG X Z, KIRK D W,et al. Sorption and stability of mercury on activated carbon for emission control[J].Journal of Hazardous Materials,2009,168(2/3):978-982. [15] DIAMANTOPOULOU I,SKODRAS G,SAKELLAROPOULOS G P. Sorption of mercury by activated carbon in the presence of flue gas components[J].Fuel Processing Technology,2010,91(2):158-163. [16] ZENG H,JIN F,GUO J. Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon[J].Fuel,2004,83(1):143-146. [17] FENG W,KWON S,FENG X,et al. Sulfur impregnation on activated carbon fibers through H2S oxidation for vapor phase mercury removal[J].Journal of Environmental Engineering,2006,132(3):292-300. [18] SENIOR C L,JOHNSON S A. Impact of carbon-in-ash on mercury removal across particulate control devices in coal-fired power plants[J].Energy & Fuels,2005,19(3):859-863. [19] HUA X,ZHOU J,LI Q,et al. Gas-phase elemental mercury removal by CeO2 impregnated activated coke[J].Energy & Fuels,2010,24(10):5426-5431. [20] GHORISHI S B,SINGER C,SEDMAN C. Preparation and evaluation of modified lime and silica-lime sorbents for mercury vapor emissions control[R].ARCADIS Geraghty and Miller, Inc.,Research Triangle Park,NC(United States);Environmental Protection Agency,National Risk Management Research Lab.,Research Triangle Park,NC(United States),1999. [21] MORENCY J. Zeolite sorbent that effectively removes mercury from flue gases[J].Filtration & Separation,2002,39(7):24-26. [22] BRIGATTI M F,COLONNA S,MALFERRARI D,et al. Mercury adsorption by montmorillonite and vermiculite:a combined XRD,TG-MS,and EXAFS study[J].Applied Clay Science,2005, 28(1):1-8. [23] DIAS FILHO N L,DO CARMO D R. Study of an organically modified clay:selective adsorption of heavy metal ions and voltammetric determination of mercury (Ⅱ)[J].Talanta,2006,68(3):919-927. [24] LOVELL J S,TURCHI C S,BRODERICK T E. High capacity regenerable sorbent for removal of mercury from flue gas:US6719828[P].2004-04-13. [25] JURNG J,LEE T G,LEE G W,et al. Mercury removal from incineration flue gas by organic and inorganic adsorbents[J].Chemosphere,2002,47(9):907-913. [26] GAO P,XIANG J,MAO J B,et al. Experiment of the macromolecular chitosan to remove mercury in the flue gas of coal combustion[J].Proceedings of the CSEE,2006,26(24):88-93. [27] DE M,AZARGOHAR R,DALAI A K,et al. Mercury removal by bio-char based modified activated carbons[J].Fuel,2013,103:570-578. [28] ZHANG Y S,DUAN W,LIU Z,et al. Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor[J].Fuel,2014,128:274-280. [29] NELSON S G. Sorbents and methods for the removal of mercury from combustion gases:US 6953494[P].2005-10-11. [30] HSI H C,ROOD M J,ROSTAM-ABADI M,et al. Mercury adsorption properties of sulfur-impregnated adsorbents[J].Journal of Environmental Engineering,2002,128(11):1080-1089. [31] PRESTO A A,GRANITE E J. Survey of catalysts for oxidation of mercury in flue gas[J].Environmental Science & Technology,2006,40(18):5601-5609. [32] LIU S H,YAN N Q,LIU Z R,et al. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants[J].Environmental Science & Technology,2007,41(4):1405-1412. [33] KARATZA D,PRISCIANDARO M,LANCIA A,et al. Silver impregnated carbon for adsorption and desorption of elemental mercury vapors[J].Journal of Environmental Sciences,2011,23(9):1578-1584. [34] LEE S J,SEO Y C,JURNG J,et al. Removal of gas-phase elemental mercuryby iodine-and chloride-impregnated activated carbons[J].Atmospheric Environment,2004,38(29),4887-4893. [35] 胡长兴,周劲松,骆仲泱,等.烟气脱汞过程中活性炭喷射量的影响因素[J].化工学报,2005,56(11):2172-2177.HU C X,ZHOU J S,LUO Z Y,et al. Factors affecting amount of activated carbon injection for flue gas mercury control2[J].Journal of Chemical Industry and Engineering(China),2005,56(11):2172-2177. [36] SJOSTROM S,DURHAM M,BUSTARD C J,et al. Activated carbon injection for mercury control:overview[J].Fuel,2010,89(6),1320-1322. [37] 刘昕,蒋勇.美国燃煤火力发电厂汞控制技术的发展及现状[J].高科技与产业化,2009(3):92-95.LIU X,JIANG Y. Coal-fired power plants mercury control technology development and the present situation[J].High-Technology & Industrialization,2009(3):92-95. [38] 孙巍,晏乃强,贾金平.载溴活性炭去除烟气中的单质汞[J].中国环境科学,2006,26(3):257-261.SUN W,YAN N Q,JIA J P,et al. Removal of elemental mercury in flue gas by brominated activated carbon[J].China Environmental Science,2006,26(3):257-261. [39] 谭增强,邱建荣,向军,等.氯化锌改性竹炭脱除单质汞的特性与机理分析[J].化工学报,2011,62(7):1944-1950.TAN Z Q,QIU J R,XIANG J,et al. Performance and mechanism for elemental mercury removal by bamboo charcoal modified by ZnCl2[J].CIESC Journal,2011,62(7):1944-1950. [40] CHIU C H,HIS H C,LIN C C. Control of mercury emissions from coal-combustion flue gases using CuCl2-modified zeolite and evaluating the cobenefit effects on SO2 and NO removal[J].Fuel Processing Technology,2014,126:138-144. [41] SJOSTROM S. Assessment of low cost novel sorbents for coal-fired power plant mercury control[R].Offile of Scientific & Technical Information Report,2002. [42] FEELEY Ⅲ T J,BRICKETT L A,O'PALKO B A,et al. Field testing of mercury control technologies for coal-fired power plants[J].DOE/NETL Mercury R&D Program Review,2005. [43] PADAK B,WILCOX J. Understanding mercury binding on activated carbon[J].Carbon, 2009,47(12):2855-2864. [44] LI L,LI X,LEE J Y,et al. The effect of surface properties in activated carbon on mercury adsorption[J].Industrial & Engineering Chemistry Research,2012,51:9136-9144. [45] LEE S S,LEE J Y,KEENER T C. Mercury oxidation and adsorption characteristics of chemically promoted activated carbon sorbents[J].Fuel Processing Technology,2009,90:1314-1318. [46] YAO Y,VELPARI V,ECONOMY J,et al. Design of sulfur treated activated carbon fibers for gas phase elemental mercury removal[J].Fuel,2014,116:560-565. [47] DU W,YIN L B,ZHUO Y Q,et al. Catalytic oxidation and adsorption of elemental mercury over CuCl2-impregnated Sorbents[J].Industrial & Engineering Chemistry Research, 2014,53(2):582-59. [48] 高洪亮,周劲松,骆仲泱,等.改性活性炭对模拟燃煤烟气中汞吸附的实验研究[J].中国电机工程学报,2007,27(8):26-30.GAO H L,ZHOU J S,LUO Z Y,et al. Experimental study on Hg vapor adsorption of modified activated carbons in simulated flue gas[J].Proceedings of the CSEE,2007,27(8):26-30. [49] TAN Z Q,SUN L S,XIANG J,et al. Gas-phase elemental mercury removal by novel carbon-based sorbents[J].Carbon,2012,50:362-371. [50] CAI J,SHEN B X,LI Z,et al. Removal of elemental mercury by clays impregnated with KI and KBr[J].Chemical Engineering Journal,2014,241:19-27. [51] ZHOU Q,DUAN Y F,HONG Y G,et al. Experimental and kinetic studies of gas-phase mercury adsorption by raw and bromine modified activated carbon[J].Fuel Processing Technology,2015,134:325-332. [52] 周强,冒咏秋,段钰锋,等.溴素改性活性炭汞吸附特性研究[J].工程热物理学报,2014,35(12):2531-2534.ZHOU Q,MAO Y Q,DUAN Y F,et al. Studies on mercury adsorption on bromine modified activated carbon[J].Journal of Engineering Thermophysics,2014,35(12):2531-2534. [53] 洪亚光,段钰锋,朱纯,等.高硫石油焦喷射脱汞实验研究[J].工程热物理学报,2014,35(7):1439-1442.HONG Y G,DUAN Y F,ZHU C,et al. Investigation of injecting high-sulfur petroleum coke for mercury adsorption[J].Journal of Engineering Thermophysics,2014,35(7):1439-1442. [54] 佘敏,段钰锋,朱纯,等. CO2/H3PO4活化NH4Br改性稻壳焦的脱汞性能实验研究[J].东南大学学报(自然科学版),2014,44(2):321-327.SHE M,DUAN Y F,ZHU C,et al. Experimental study on mercury adsorption performances of rice husk chars activated by CO2/H3PO4 and modified by NH4Br[J].Journal of Southeast University(Natural Science Edition),2014,44(2):321-327. [55] 洪亚光,段钰锋,朱纯,等.载溴高硫石油焦活性炭脱汞实验研究[J].中国电机工程学报,2014,34(11):1762-1768.HONG Y G,DUAN Y F,ZHU C,et al. Experimental study on mercury removal of high-sulfur petroleum coke activated carbon impregnated with bromine[J].Proceedings of the CSEE,2014,34(11):1762-1768. [56] KRISHNAKUMAR B,NIKSA S,SLOSS L,et al. Process optimization guidance(POG and iPOG)for mercury emissions control[J].Energy Fuels,2012,26:4624-4634. [57] SAHA A. Investigation of changes in surface chemistries on virgin and brominated activated carbon sorbents during mercury capture:before and after regeneration[J].Energy & Fuels,2014,28(6):4021-4027. [58] DONG J,XU Z H,KUZNICKI S M. Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbent[J].Environmental Science & Technology,2009,43(9):3266-3271. [59] LIU Y, KELLY D J A,YANG H,et al. Novel regenerable sorbent for mercury capture from flue gas of coal-fired power plant[J].Environmental Science & Technology,2008,42(16):6205-6210. [60] 文小于.γ-Al2O3负载CeO2和CuO脱除燃煤烟气汞的实验研究[D].长沙:湖南大学,2011.WEN X Y. The research on the removal efficiency of mercury from coal-fired flue gas by γ-Al2O3 loaded CeO2 and CuO[D].Changsha:Hunan University,2011. [61] DU W,YIN L B,ZHUO Y Q,et al. Performance of CuOx-neutral Al2O3 sorbents on mercury removal from simulated coal combustion flue gas[J].Fuel Processing Technology,2015,131:403-408. [62] HE C,SHEN B X,CHEN J H,et al. Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs[J].Environmental Science & Technology,2014,48(14):7891-7898. [63] 李剑锋,乔少华,晏乃强,等.用于气态零价汞转化的催化剂研究[J].环境工程学报,2010,4(5):1143-1146.LI J F,QIAO S H,YAN N Q,et al. Study on catalysts for catalytic oxidation of gaseous elemental mercury[J].Chinese Journal of Environmental Engineering,2010,4(5):1143-1146. [64] SCALA F,ANACLERIA C,CIMINO S. Characterization of a regenerable sorbent for high temperature elemental mercury capture from flue gas[J].Fuel,2013,108:13-18. [65] YANG J Y,ZHAO Y C,ZHANG J Y,et al. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas[J].Environmental Science & Technology,2014,48:14837-14843. [66] ZHOU J S,HOU W H,QI P,et al. CeO2-TiO2 sorbents for the removal of elemental mercury from syngas[J].Environmental Science & Technology,2013,47(17):10056-10062. [67] OZAKI M,UDDIN M A,SASAOKA E,et al. Temperature programmed decomposition desorption of the mercury species over spent iron-based sorbents for mercury removal from coal derived fuel gas[J].Fuel,2008,87:3610-3615. [68] BALLESTERO D,GÓMEZ-GIMÉNEZ C,GARCíA-DíEZ E,et al. Influence of temperature and regeneration cycles on Hg capture and efficiency by structured Au/C regenerable sorbents[J].Journal of Hazardous Materials,2013,260:247-254. [69] QU Z,XIE J K,XU H M,et al. Regenerable sorbent with a high capacity for elemental mercury removal and recycling from the simulated flue gas at a low temperature[J].Energy & Fuels,2015,29(10):6187-6196. [70] ZENG X B,XU Y,ZHANG B,et al. Elemental mercury adsorption and regeneration performance of sorbents FeMnOx enhanced via non-thermal plasma[J].Chemical Engineering Journal,2017,309:503-212. |
[1] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[2] | 王科菊, 赵成, 胡晓玫, 云军阁, 魏凝涵, 姜雪迎, 邹昀, 陈志航. 金属氧化物低温催化氧化VOCs的研究进展[J]. 化工进展, 2023, 42(5): 2402-2412. |
[3] | 张巍, 王锐, 缪平, 田戈. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(3): 1257-1269. |
[4] | 杨程瑞雪, 黄琪媛, 冉建速, 崔耘通, 王健健. 磷酸修饰二氧化硅负载钯催化剂用于木质素衍生物高效水相低温加氢脱氧[J]. 化工进展, 2023, 42(10): 5179-5190. |
[5] | 刘艳辉, 周明芳, 马铭, 王凯, 谭天伟. 可再生能源驱动的生物催化固定CO2的研究进展[J]. 化工进展, 2023, 42(1): 1-15. |
[6] | 刘楠, 胡一铭, 杨颖, 李红晋, 高竹青, 郝秀丽. 废旧聚丙烯/活性炭微波共裂解制取可燃裂解气与轻质裂解油[J]. 化工进展, 2022, 41(S1): 150-159. |
[7] | 王红霞, 徐婉怡, 张早校. 可再生电力电解制绿色氢能的发展现状与建议[J]. 化工进展, 2022, 41(S1): 118-131. |
[8] | 胡兵, 徐立军, 何山, 苏昕, 汪继伟. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604. |
[9] | 张鹏, 孟凡会, 杨贵楠, 李忠. 金属氧化物在OX-ZEO催化剂中催化CO x 加氢制低碳烯烃研究进展[J]. 化工进展, 2022, 41(8): 4159-4172. |
[10] | 武传朋, 李传坤, 杨哲, 苟成冬, 高新江. 固体吸附材料脱除SO2研究进展[J]. 化工进展, 2022, 41(7): 3840-3854. |
[11] | 卢志强, 张亮, 李俊, 付乾, 朱恂, 廖强, 陈鹏宇. 不同负载下热再生氨电池产电及Cu2+去除特性[J]. 化工进展, 2022, 41(6): 3341-3349. |
[12] | 狄冠丞, 周强, 陶信, 尚瑜, 宋涛, 卢平, 徐贵玲. 掺硫介孔炭的制备及其汞脱除特性[J]. 化工进展, 2022, 41(5): 2761-2769. |
[13] | 张雷, 王海英, 韩洪晶, 陈彦广, 王程昊. 木质素催化热解用催化剂的研究进展[J]. 化工进展, 2022, 41(5): 2429-2440. |
[14] | 李庆慧, 宋焕玲, 赵华华, 杨建, 赵军, 闫亮, 丑凌军. 钼铋复合金属氧化物催化低碳烯烃选择氧化制备醛类研究进展[J]. 化工进展, 2022, 41(4): 1873-1885. |
[15] | 王思怡, 李月慧, 葛玉洁, 王焕然, 赵璐璐, 李先春. NTP-DBD气化城市污泥及其模型化合物: 气氛对产物分布及特性的影响[J]. 化工进展, 2022, 41(4): 2150-2160. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 169
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 271
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |