Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 619-627.DOI: 10.16085/j.issn.1000-6613.2021-0517
• Energy processes and technology • Previous Articles Next Articles
NI Qing(), LAI Jinbo, PENG Dongyue, GUAN Cuishi(), LONG Jun
Received:
2021-03-15
Revised:
2021-08-06
Online:
2022-02-23
Published:
2022-02-05
Contact:
GUAN Cuishi
通讯作者:
管翠诗
作者简介:
倪清(1995—),男,博士研究生,研究方向为石油馏分溶剂萃取分离。E-mail:基金资助:
CLC Number:
NI Qing, LAI Jinbo, PENG Dongyue, GUAN Cuishi, LONG Jun. Progress in extraction separation of hydrocarbons by ionic liquids[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 619-627.
倪清, 来锦波, 彭东岳, 管翠诗, 龙军. 离子液体萃取分离烃类化合物的研究进展[J]. 化工进展, 2022, 41(2): 619-627.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0517
离子液体 | 温度/K | 分离体系 | 分配系数 | 选择性 | 参考文献 |
---|---|---|---|---|---|
1-丁基吡啶四氟硼酸盐 | 313.2 | 庚烷+甲苯 | 0.3~0.4 | 23.4~74.4 | [ |
1-庚基吡啶四氟硼酸盐 | 313.2 | 庚烷+甲苯 | 0.53~0.67 | 7.4~25.6 | |
1-乙基-3甲基咪唑双三氟甲磺酰亚胺盐 | 313.2 | 庚烷+甲苯 | 0.66~0.88 | 9.3~37.7 | [ |
1-丁基-3甲基咪唑双三氟甲磺酰亚胺盐 | 313.2 | 庚烷+甲苯 | 0.76~1.26 | 5.9~25.0 | |
1-乙基-3-甲基咪唑甲磺酸盐 | 313.2 | 庚烷+甲苯 | 0.13~0.16 | 22.0~79.7 | [ |
1-乙基-3-甲基咪唑三氟甲烷磺酸盐 | 313.2 | 庚烷+甲苯 | 0.28~0.39 | 14.5~42.9 | |
1-乙基-3-甲基咪唑四氟乙烷磺酸盐 | 313.2 | 庚烷+甲苯 | 0.25~0.31 | 16.8~53.8 | |
双(1-乙基-3-甲基咪唑)硫氰钴酸盐 | 313.2 | 庚烷+甲苯 | 0.81~1.28 | 23.7~68.7 | [ |
1-乙基-3-甲基咪唑硫酸氢盐 | 313.2 | 庚烷+甲苯 | 0.03~0.05 | 23.1~75.4 | [ |
1-乙基-3-甲基咪唑硫酸甲酯盐 | 313.2 | 庚烷+甲苯 | 0.2~0.26 | 17.6~68.1 | |
1,4-双(1-乙基咪唑)己基二双三氟甲磺酰亚胺盐 | 303.15 | 环己烷+苯 | 24.9 | 2.25 | [ |
1-丁基-3-甲基咪唑氯铁酸盐 | 298.15 | 环己烷+苯 | 2.16 | 11.55 | [ |
1-庚基-3-甲基吡啶四氟硼酸盐 | 313.15 | 癸烷+丁苯 | 0.45 | 49.4 | [ |
离子液体 | 温度/K | 分离体系 | 分配系数 | 选择性 | 参考文献 |
---|---|---|---|---|---|
1-丁基吡啶四氟硼酸盐 | 313.2 | 庚烷+甲苯 | 0.3~0.4 | 23.4~74.4 | [ |
1-庚基吡啶四氟硼酸盐 | 313.2 | 庚烷+甲苯 | 0.53~0.67 | 7.4~25.6 | |
1-乙基-3甲基咪唑双三氟甲磺酰亚胺盐 | 313.2 | 庚烷+甲苯 | 0.66~0.88 | 9.3~37.7 | [ |
1-丁基-3甲基咪唑双三氟甲磺酰亚胺盐 | 313.2 | 庚烷+甲苯 | 0.76~1.26 | 5.9~25.0 | |
1-乙基-3-甲基咪唑甲磺酸盐 | 313.2 | 庚烷+甲苯 | 0.13~0.16 | 22.0~79.7 | [ |
1-乙基-3-甲基咪唑三氟甲烷磺酸盐 | 313.2 | 庚烷+甲苯 | 0.28~0.39 | 14.5~42.9 | |
1-乙基-3-甲基咪唑四氟乙烷磺酸盐 | 313.2 | 庚烷+甲苯 | 0.25~0.31 | 16.8~53.8 | |
双(1-乙基-3-甲基咪唑)硫氰钴酸盐 | 313.2 | 庚烷+甲苯 | 0.81~1.28 | 23.7~68.7 | [ |
1-乙基-3-甲基咪唑硫酸氢盐 | 313.2 | 庚烷+甲苯 | 0.03~0.05 | 23.1~75.4 | [ |
1-乙基-3-甲基咪唑硫酸甲酯盐 | 313.2 | 庚烷+甲苯 | 0.2~0.26 | 17.6~68.1 | |
1,4-双(1-乙基咪唑)己基二双三氟甲磺酰亚胺盐 | 303.15 | 环己烷+苯 | 24.9 | 2.25 | [ |
1-丁基-3-甲基咪唑氯铁酸盐 | 298.15 | 环己烷+苯 | 2.16 | 11.55 | [ |
1-庚基-3-甲基吡啶四氟硼酸盐 | 313.15 | 癸烷+丁苯 | 0.45 | 49.4 | [ |
离子液体 | 体系 | 温度/K | 脱除率 | 参考文献 |
---|---|---|---|---|
1-丁基-3-甲基咪唑氯盐 | 直馏柴油 | 333.15 | 含氮量>50%,含硫量<5% | [ |
1-辛基吡啶氯盐 | 直馏柴油 | 333.15 | ||
1-丁基-3-甲基咪唑四氟硼酸盐 | 正十二烷+苯并噻吩+吡啶+哌啶 | 303.15 | 苯并噻吩12%,吡啶45%,哌啶9% | [ |
1-丁基-3-甲基咪唑溴盐-氯化锌 | 正十二烷+甲苯+喹啉+吲哚 | 313.15 | 喹啉94%,吲哚82% | [ |
页岩油柴油馏分 | 343.15 | 总氮77% | ||
1-甲基-3-甲基咪唑磷酸二甲酯盐 | 煤焦油柴油馏分 | 313.15 | 碱氮37%,非碱氮50% | [ |
1-丁基-3-甲基咪唑磷酸二乙酯盐 | 煤焦油柴油馏分 | 313.15 | 碱氮36.1%,非碱氮59.7% | |
1-丁基-3-甲基咪唑磷酸二丁酯盐 | 煤焦油柴油馏分 | 313.15 | 碱氮32.5%,非碱氮58.4% | |
1-乙基-3-甲基咪唑磷酸二氢盐 | 煤焦油柴油馏分 | 313.15 | 碱氮86.7%,非碱氮60.1% | |
1-乙基-3-甲基咪唑二氰胺盐 | 己烷+甲苯+吡啶+咔唑+噻吩+二苯并噻吩 | 303.15 | 吡啶69.13%,咔唑100%,噻吩49.2%,二苯并噻吩55.6% | [ |
1-戊基-3-甲基咪唑双三氟甲磺酰亚胺盐 | 正十二烷+正十六烷+甲苯+吡啶+噻吩+苯并噻吩 | 303.15 | 吡啶87.8%,噻吩53.58%,苯并噻吩66.29% | [ |
离子液体 | 体系 | 温度/K | 脱除率 | 参考文献 |
---|---|---|---|---|
1-丁基-3-甲基咪唑氯盐 | 直馏柴油 | 333.15 | 含氮量>50%,含硫量<5% | [ |
1-辛基吡啶氯盐 | 直馏柴油 | 333.15 | ||
1-丁基-3-甲基咪唑四氟硼酸盐 | 正十二烷+苯并噻吩+吡啶+哌啶 | 303.15 | 苯并噻吩12%,吡啶45%,哌啶9% | [ |
1-丁基-3-甲基咪唑溴盐-氯化锌 | 正十二烷+甲苯+喹啉+吲哚 | 313.15 | 喹啉94%,吲哚82% | [ |
页岩油柴油馏分 | 343.15 | 总氮77% | ||
1-甲基-3-甲基咪唑磷酸二甲酯盐 | 煤焦油柴油馏分 | 313.15 | 碱氮37%,非碱氮50% | [ |
1-丁基-3-甲基咪唑磷酸二乙酯盐 | 煤焦油柴油馏分 | 313.15 | 碱氮36.1%,非碱氮59.7% | |
1-丁基-3-甲基咪唑磷酸二丁酯盐 | 煤焦油柴油馏分 | 313.15 | 碱氮32.5%,非碱氮58.4% | |
1-乙基-3-甲基咪唑磷酸二氢盐 | 煤焦油柴油馏分 | 313.15 | 碱氮86.7%,非碱氮60.1% | |
1-乙基-3-甲基咪唑二氰胺盐 | 己烷+甲苯+吡啶+咔唑+噻吩+二苯并噻吩 | 303.15 | 吡啶69.13%,咔唑100%,噻吩49.2%,二苯并噻吩55.6% | [ |
1-戊基-3-甲基咪唑双三氟甲磺酰亚胺盐 | 正十二烷+正十六烷+甲苯+吡啶+噻吩+苯并噻吩 | 303.15 | 吡啶87.8%,噻吩53.58%,苯并噻吩66.29% | [ |
离子液体 | 温度/K | 压力/kPa | 体系 | 选择性 | 参考文献 |
---|---|---|---|---|---|
1-丁基-3-甲基咪唑三氟甲烷磺酸盐 | 313 | 常压 | 己烯/己烷 | 1.95 | [ |
1-丁基-3-甲基咪唑四氟硼酸盐 | 313 | 常压 | 己烯/己烷 | 2.6 | |
1-丁基-3-甲基咪唑醋酸盐 | 313 | 常压 | 己烯/己烷 | 1.86 | |
1-乙基-3-甲基咪唑二氰胺盐 | 313 | 常压 | 己烯/己烷 | 2.58 | |
1-炔乙基-3-甲基咪唑双三氟甲磺酰亚胺盐 | 313 | 60~100 | 乙烯/乙烷 | 0.65 | [ |
1-氰丙基-3-甲基咪唑二氰胺盐 | 313 | 60~100 | 乙烯/乙烷 | 0.67 | |
1-丁基-3-甲基咪唑磷酸甲酯盐 | 313 | 60~100 | 乙烯/乙烷 | 1.45 | |
1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐 | 298 | 常压 | 环己烯/环己烷 | 1.9 | [ |
1-乙基-3-甲基咪唑三氰基甲烷盐 | 298 | 常压 | 环己烯/环己烷 | 3 | |
1-苄基-3-甲基咪唑双三氟甲磺酰亚胺盐 | 298 | 常压 | 环己烯/环己烷 | 1.76 | |
四丁基膦正己酸盐 | 298 | 20~160 | 乙烯/乙炔 | 21.4 | [ |
三己基十四烷基膦醋酸盐 | 298 | 20~160 | 乙烯/乙炔 | 9.4 | |
二甲基苯甲酰胺双三氟甲磺酰亚胺银盐 | 298 | 100 | 庚烯/庚烷 | 5.07 | [ |
298 | 100 | 辛烯/辛烷 | 3.39 | ||
盐酸三乙胺-氯化亚铜 | 303 | 250 | 乙烯/乙烷 | 8.78 | [ |
离子液体 | 温度/K | 压力/kPa | 体系 | 选择性 | 参考文献 |
---|---|---|---|---|---|
1-丁基-3-甲基咪唑三氟甲烷磺酸盐 | 313 | 常压 | 己烯/己烷 | 1.95 | [ |
1-丁基-3-甲基咪唑四氟硼酸盐 | 313 | 常压 | 己烯/己烷 | 2.6 | |
1-丁基-3-甲基咪唑醋酸盐 | 313 | 常压 | 己烯/己烷 | 1.86 | |
1-乙基-3-甲基咪唑二氰胺盐 | 313 | 常压 | 己烯/己烷 | 2.58 | |
1-炔乙基-3-甲基咪唑双三氟甲磺酰亚胺盐 | 313 | 60~100 | 乙烯/乙烷 | 0.65 | [ |
1-氰丙基-3-甲基咪唑二氰胺盐 | 313 | 60~100 | 乙烯/乙烷 | 0.67 | |
1-丁基-3-甲基咪唑磷酸甲酯盐 | 313 | 60~100 | 乙烯/乙烷 | 1.45 | |
1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐 | 298 | 常压 | 环己烯/环己烷 | 1.9 | [ |
1-乙基-3-甲基咪唑三氰基甲烷盐 | 298 | 常压 | 环己烯/环己烷 | 3 | |
1-苄基-3-甲基咪唑双三氟甲磺酰亚胺盐 | 298 | 常压 | 环己烯/环己烷 | 1.76 | |
四丁基膦正己酸盐 | 298 | 20~160 | 乙烯/乙炔 | 21.4 | [ |
三己基十四烷基膦醋酸盐 | 298 | 20~160 | 乙烯/乙炔 | 9.4 | |
二甲基苯甲酰胺双三氟甲磺酰亚胺银盐 | 298 | 100 | 庚烯/庚烷 | 5.07 | [ |
298 | 100 | 辛烯/辛烷 | 3.39 | ||
盐酸三乙胺-氯化亚铜 | 303 | 250 | 乙烯/乙烷 | 8.78 | [ |
1 | 张锁江, 徐春明, 吕兴梅. 离子液体与绿色化学[M]. 北京: 科学出版社, 2009. |
ZHANG S J, XU C M, LYU X M. Ionic liquids and green chemistry[M]. Beijing: Science Press, 2009. | |
2 | ROGERS R D, SEDDON K R. Ionic liquids—Solvents of the future?[J]. Science, 2003, 302(5646): 792-793. |
3 | EARLE M J, SEDDON K R. Ionic liquids. Green solvents for the future[J]. Pure and Applied Chemistry, 2000, 72(7): 1391-1398. |
4 | GALIŃSKI M, LEWANDOWSKI A, STĘPNIAK I. Ionic liquids as electrolytes[J]. Electrochimica Acta, 2006, 51(26): 5567-5580. |
5 | SHELDON R A, LAU R M, SORGEDRAGER M J, et al. Biocatalysis in ionic liquids[J]. Green Chemistry, 2002, 4(2): 147-151. |
6 | 易兰, 李文英, 冯杰. 离子液体/低共熔溶剂在煤基液体分离中的应用[J]. 化工进展, 2020, 39(6): 2066-2078. |
YI L, LI W Y, FENG J. Application of ionic liquids and deep eutectic solvents in the separation of coal-based liquids[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2066-2078. | |
7 | REBELO L P N, LOPES J N C, ESPERANÇA J M S S, et al. Accounting for the unique, doubly dual nature of ionic liquids from a molecular thermodynamic and modeling standpoint[J]. Accounts of Chemical Research, 2007, 40(11): 1114-1121. |
8 | HEIMER N E, SESTO R E DEL, MENG Z Z, et al. Vibrational spectra of imidazolium tetrafluoroborate ionic liquids[J]. Journal of Molecular Liquids, 2006, 124(1/2/3): 84-95. |
9 | TALATY E R, RAJA S, STORHAUG V J, et al. Raman and infrared spectra and ab initio calculations of C2~4mim imidazolium hexafluorophosphate ionic liquids[J]. The Journal of Physical Chemistry B, 2004, 108(35): 13177-13184. |
10 | RIBEIRO M C C. Strong anion-anion hydrogen bond in the ionic liquid 1-ethyl-3-methylimidazolium hydrogen sulfate[J]. Journal of Molecular Liquids, 2020, 310: 113178. |
11 | FEDOROVA I V, SAFONOVA L P. Ion pair structures and hydrogen bonding in RnNH4-n alkylammonium ionic liquids with hydrogen sulfate and mesylate anions by DFT computations[J]. The Journal of Physical Chemistry A, 2020, 124(16): 3170-3179. |
12 | DONG K, ZHANG S J, WANG J J. Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions[J]. Chemical Communications, 2016, 52(41): 6744-6764. |
13 | DUPONT J, SUAREZ P A D, DE SOUZA R F, et al. C—H-π interactions in 1-n-butyl-3-methylimidazolium tetraphenylborate molten salt: solid and solution structures[J]. Chemistry-a European Journal, 2000, 6(13): 2377-2381. |
14 | DONG K, SONG Y T, LIU X M, et al. Understanding structures and hydrogen bonds of ionic liquids at the electronic level[J]. The Journal of Physical Chemistry B, 2012, 116(3): 1007-1017. |
15 | DONG K, ZHANG S J. Hydrogen bonds: a structural insight into ionic liquids[J]. Chemistry -a European Journal, 2012, 18(10): 2748-2761. |
16 | DONG K, ZHANG S J, WANG D X, et al. Hydrogen bonds in imidazolium ionic liquids[J]. The Journal of Physical Chemistry A, 2006, 110(31): 9775-9782. |
17 | GARCIA S, LARRIBA M, GARCIA J, et al. 1-Alkyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids for the liquid-liquid extraction of toluene from heptane[J]. Journal of Chemical & Engineering Data, 2011, 56(8): 3468-3474. |
18 | LUBBEN M J, CANALES R I, LYU Y Y, et al. Promising thiolanium ionic liquid for extraction of aromatics from aliphatics: experiments and modeling[J]. Industrial & Engineering Chemistry Research, 2020, 59(35): 15707-15717. |
19 | GARCIA S, LARRIBA M, GARCIA J, et al. Separation of toluene from n-heptane by liquid-liquid extraction using binary mixtures of [bpy][BF4] and [4bmpy][Tf2N] ionic liquids as solvent[J]. The Journal of Chemical Thermodynamics, 2012, 53(1): 119-124. |
20 | GARCÍA S, GARCÍA J, LARRIBA M, et al. Sulfonate-based ionic liquids in the liquid-liquid extraction of aromatic hydrocarbons[J]. Journal of Chemical & Engineering Data, 2011, 56(7): 3188-3193. |
21 | LARRIBA M, NAVARRO P, DELGADO-MELLADO N, et al. Extraction of aromatic hydrocarbons from pyrolysis gasoline using tetrathiocyanatocobaltate-based ionic liquids: experimental study and simulation[J]. Fuel Processing Technology, 2017, 159: 96-110. |
22 | TAN L, ZHU J M, HE X D, et al. The mechanism of toluene absorption by phosphonium ionic liquids with multiple sites[J]. Journal of Molecular Liquids, 2021, 331: 115501. |
23 | TAN L, ZHU J M, ZHOU M, et al. The effect of imidazolium and phosphonium ionic liquids on toluene absorption studied by a molecular simulation[J]. Journal of Molecular Liquids, 2020, 298(15): 112054-112061. |
24 | LYU Y Y, BRENNECKE J F, STADTHERR M A. Review of recent aromatic-aliphatic-ionic liquid ternary liquid-liquid equilibria and their modeling by COSMO-RS[J]. Industrial & Engineering Chemistry Research, 2020, 59(19): 8871-8893. |
25 | YAO C F, HOU Y C, WU W Z, et al. Imidazolium-based dicationic ionic liquids: highly efficient extractants for separating aromatics from aliphatics[J]. Green Chemistry, 2018, 20(13): 3101-3111. |
26 | YAO C F, HOU Y C, REN S H, et al. Selective extraction of aromatics from aliphatics using dicationic ionic liquid-solvent composite extractants[J]. Journal of Molecular Liquids, 2019, 291: 111267. |
27 | ZHANG F, LI Y, ZHANG L, et al. Benzyl- and vinyl-functionalized imidazoium ionic liquids for selective separating aromatic hydrocarbons from alkanes[J]. Industrial & Engineering Chemistry Research, 2016, 55(3): 747-756. |
28 | GARCIA S, GARCIA J, LARRIBA M, et al. Liquid-liquid extraction of toluene from heptane by {[4bmpy][Tf2N] + [emim][CHF2CF2SO3]} ionic liquid mixed solvents[J]. Fluid Phase Equilibria, 2013, 337(15): 47-52. |
29 | GARCIA S, LARRIBA M, CASAS A, et al. Separation of toluene and heptane by liquid liquid extraction using binary mixtures of the ionic liquids 1-butyl-4-methylpyridinium bis(trifluoromethylsulfonyl)imide and 1-ethyl-3-methylimidazolium ethylsulfate[J]. Journal of Chemical & Engineering Data, 2012, 57(9): 2472-2478. |
30 | GARCIA S, LARRIBA M, GARCIA J, et al. Liquid-liquid extraction of toluene from n-heptane using binary mixtures of N-butylpyridinium tetrafluoroborate and N-butylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquids[J]. Chemical Engineering Journal, 2012, 180: 210-215. |
31 | DELGADO-MELLADO N, GARCÍA J, RODRÍGUEZ F, et al. Insights into ionic liquid/aromatic systems from NMR spectroscopy: how water affects solubility and intermolecular interactions[J]. ChemPlusChem, 2019, 84(7): 872-881. |
32 | YAO C F, HOU Y C, SUN Y, et al. Extraction of aromatics from aliphatics using a hydrophobic dicationic ionic liquid adjusted with small-content water[J]. Separation and Purification Technology, 2020, 236: 116287. |
33 | 史军军, 吴巍, 葸雷. 离子液体1-己基-4-甲基吡啶四氟硼酸盐与烃类的相互作用规律[J]. 石油学报(石油加工), 2021, 37(3): 541-548. |
SHI J J, WU W, XI L. Interaction mechanism between [C6MPy][BF4] ionic liquid and hydrocarbon[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(3): 541-548. | |
34 | BÖSMANN A, DATSEVICH L, JESS A, et al. Deep desulfurization of diesel fuel by extraction with ionic liquids[J]. Chemical Communications, 2002, 23(23): 2494-2495. |
35 | ZHANG S G, ZHANG Q L, ZHANG Z C. Extractive desulfurization and denitrogenation of fuels using ionic liquids[J]. Industrial & Engineering Chemistry Research, 2004, 43(2): 614-622. |
36 | CHEN X C, YUAN S, ABDELTAWAB A A, et al. Extractive desulfurization and denitrogenation of fuels using functional acidic ionic liquids[J]. Separation and Purification Technology, 2014, 133: 187-193. |
37 | ZHANG S G, CONRAD ZHANG Z. Novel properties of ionic liquids in selective sulfur removal from fuels at room temperature[J]. Green Chemistry, 2002, 4(4): 376-379. |
38 | ALONSO L, ARCE A, FRANCISCO M, et al. Phase behaviour of 1-methyl-3-octylimidazolium bis[trifluoromethylsulfonyl] imide with thiophene and aliphatic hydrocarbons: the influence of n-alkane chain length[J]. Fluid Phase Equilibria, 2008, 263(2): 176-181. |
39 | RODRÍGUEZ-CABO B, SOTO A, ARCE A. Desulfurization of fuel-oils with [C2mim][NTf2]: a comparative study[J]. The Journal of Chemical Thermodynamics, 2013, 57(1): 248-255. |
40 | MANZANILLA B, DOMÍNGUEZ Z, DOMÍNGUEZ-ESQUIVEL J M, et al. Study on the interactions between [BMIM][SCN] and naphtalene/ dibenzothiophene: a theory-experiment comparison[J]. Journal of Molecular Structure, 2020, 1207:127846. |
41 | WANG J W, SONG Z, LI X X, et al. Toward rational functionalization of ionic liquids for enhanced extractive desulfurization: computer-aided solvent design and molecular dynamics simulation[J]. Industrial & Engineering Chemistry Research, 2020, 59(5): 2093-2103. |
42 | NEJAD N F, SOOLARI E S, ADIBI M, et al. Imidazolium-based alkylsulfate ionic liquids and removal of sulfur content from model of gasoline[J]. Petroleum Science and Technology, 2013, 31(5): 472-480. |
43 | NIE Y, LI C X, SUN A J, et al. Extractive desulfurization of gasoline using imidazolium-based phosphoric ionic liquids[J]. Energy & Fuels, 2006, 20(5): 2083-2087. |
44 | 林赛燕, 刘丹, 王红, 等. 酸性离子液体萃取脱除焦化柴油中碱性氮化物[J]. 石油化工高等学校学报, 2012, 25(1): 8-12. |
LIN S Y, LIU D, WANG H, et al. Removing basic nitrogen compounds from coker diesel by extraction with acidic ionic liquid[J]. Journal of Petrochemical Universities, 2012, 25(1): 8-12. | |
45 | WANG H, XIE C X, YU S T, et al. Denitrification of simulated oil by extraction with H2PO4-based ionic liquids[J]. Chemical Engineering Journal, 2014, 237: 286-290. |
46 | HIZADDIN H F, HADJ-KALI M K, RAMALINGAM A, et al. Extraction of nitrogen compounds from diesel fuel using imidazolium- and pyridinium-based ionic liquids: experiments, COSMO-RS prediction and NRTL correlation[J]. Fluid Phase Equilibria, 2015, 405: 55-67. |
47 | 冯锦锋. 离子液体的合成、表征及其对柴油中碱性氮的脱除研究[D]. 武汉: 武汉工程大学, 2012. |
FENG J F. Synthesis and characterization of ionic liquid and removal basic nitrogen from diesel fuel[D]. Wuhan: Wuhan Institute of Technology, 2012. | |
48 | 孙汉文, 冯波, 吴远远, 等. 室温离子液体在原子光谱分析中的应用研究进展[J]. 河北大学学报(自然科学版), 2010, 30(2): 216-224. |
SUN H W, FENG B, WU Y Y, et al. Research advancement for applications of room-temperature ionic liquid in atomic spectrometry[J]. Journal of Hebei University (Natural Science Edition), 2010, 30(2): 216-224. | |
49 | XIE L L, FAVRE-REGUILLON A, PELLET-ROSTAING S, et al. Selective extraction and identification of neutral nitrogen compounds contained in straight-run diesel feed using chloride based ionic liquid[J]. Industrial & Engineering Chemistry Research, 2008, 47(22): 8801-8807. |
50 | 周兆骞, 李文深, 刘洁. [C4mim]Br/ZnCl2离子液体脱除油品中的氮化物[J]. 石油学报(石油加工), 2017, 33(5): 934-940. |
ZHOU Z Q, LI W S, LIU J. Removal of nitrogen compounds from fuel oil with [C4mim]Br/ZnCl2 ionic liquid[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(5): 934-940. | |
51 | 苏晓琳, 宋军, 杨敬一, 等. 磷酸基咪唑离子液体脱除煤焦油柴油馏分中的氮化物[J]. 化工进展, 2016, 35(4): 1081-1086. |
SU X L, SONG J, YANG J Y, et al. Extractive denitrification of coal tar diesel fraction using phosphate-based alkylimidazolium ionic liquids[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 1081-1086. | |
52 | ASUMANA C, YU G R, GUAN Y W, et al. Extractive denitrogenation of fuel oils with dicyanamide-based ionic liquids[J]. Green Chemistry, 2011, 13(11): 3300-3305. |
53 | GABRIĆ B, SANDER A, CVJETKO BUBALO M, et al. Extraction of S- and N-compounds from the mixture of hydrocarbons by ionic liquids as selective solvents[J]. The Scientific World Journal, 2013, 2013: 512953. |
54 | FALLANZA M, GONZÁLEZ-MIQUEL M, RUIZ E, et al. Screening of RTILs for propane/propylene separation using COSMO-RS methodology[J]. Chemical Engineering Journal, 2013, 220(15): 284-293. |
55 | LI R, XING H, YANG Q, et al. Selective extraction of 1-hexene against n-hexane in ionic liquids with or without silver salt[J]. Industrial & Engineering Chemistry Research, 2012, 51(25): 8588-8597. |
56 | MOURA L, DARWICH W, SANTINI C C, et al. Imidazolium-based ionic liquids with cyano groups for the selective absorption of ethane and ethylene[J]. Chemical Engineering Journal, 2015, 280: 755-762. |
57 | DOMAŃSKA U, KARPIŃSKA M, WLAZŁO M. Separation of hex-1-ene/hexane and cyclohexene/cyclohexane compounds with [EMIM]-based ionic liquids[J]. Fluid Phase Equilibria, 2016, 427: 421-428. |
58 | NAVARRO P, OVEJERO-PÉREZ A, AYUSO M, et al. Cyclohexane/cyclohexene separation by extractive distillation with cyano-based ionic liquids[J]. Journal of Molecular Liquids, 2019, 289(1): 111120-111130. |
59 | XING H B, ZHAO X, LI R L, et al. Improved efficiency of ethylene/ethane separation using a symmetrical dual nitrile-functionalized ionic liquid[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(11): 1357-1363. |
60 | ZHAO X, XING H B, YANG Q, et al. Differential solubility of ethylene and acetylene in room-temperature ionic liquids: a theoretical study[J]. The Journal of Physical Chemistry B, 2012, 116(13): 3944-3953. |
61 | XING H B, ZHAO X, YANG Q W, et al. Molecular dynamics simulation study on the absorption of ethylene and acetylene in ionic liquids[J]. Industrial & Engineering Chemistry Research, 2013, 52(26): 9308-9316. |
62 | ZHAO X, YANG Q W, XU D, et al. Design and screening of ionic liquids for C2H2/C2H4 separation by COSMO-RS and experiments[J]. AIChE Journal, 2015, 61(6): 2016-2027. |
63 | AYUSO M, OVEJERO-PÉREZ A, DELGADO-MELLADO N D, et al. Tetrathiocyanatocobaltate and bis(trifluoromethylsulfonyl)imide-based ionic liquids as mass agents in the separation of cyclohexane and cyclohexene mixtures by homogeneous extractive distillation[J]. The Journal of Chemical Thermodynamics, 2021, 157: 106403-106413. |
64 | WANG Y, THOMPSON J, ZHOU J J, et al. Use of water in aiding olefin/paraffin (liquid+liquid) extraction via complexation with a silver bis(trifluoromethylsulfonyl)imide salt[J]. The Journal of Chemical Thermodynamics, 2014, 77: 230-240. |
65 | WANG Y, HAO W Y, JACQUEMIN J, et al. Enhancing liquid-phase olefin-paraffin separations using novel silver-based ionic liquids[J]. Journal of Chemical & Engineering Data, 2015, 60(1): 28-36. |
66 | 张睿, 董淑媛, 伍洛, 等. 小分子烷烃与烯烃在离子液体中的溶解性能[J]. 化工学报, 2020, 71(10): 4674-4687. |
ZHANG R, DONG S Y, WU L, et al. Solubility of light alkanes and alkenes in ionic liquids[J]. CIESC Journal, 2020, 71(10): 4674-4687. |
[1] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[4] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[5] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[6] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[7] | QIAN Sitian, PENG Wenjun, ZHANG Xianming. Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816. |
[8] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[9] | SUO Hansheng, JIA Mengda, SONG Guang, LIU Dongqing. Digital twin-driving force for petrochemical smart factory [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3365-3373. |
[10] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[11] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[12] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
[13] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[14] | LI Ruolin, HE Shaolin, YUAN Hongying, LIU Boyue, JI Dongli, SONG Yang, LIU Bo, YU Jiqing, XU Yingjun. Effect of in-situ pyrolysis on physical properties of oil shale and groundwater quality [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3309-3318. |
[15] | ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Development and application of refinery short-cut column model [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |