Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 628-636.DOI: 10.16085/j.issn.1000-6613.2021-0633
• Energy processes and technology • Previous Articles Next Articles
ZHANG Xueying1,2(), MA Jun1,2, HE Lin1,2(
), SUI Hong1,2,3, LI Xingang1,2,3
Received:
2021-03-29
Revised:
2021-04-28
Online:
2022-02-23
Published:
2022-02-05
Contact:
HE Lin
章雪莹1,2(), 马俊1,2, 何林1,2(
), 隋红1,2,3, 李鑫钢1,2,3
通讯作者:
何林
作者简介:
章雪莹(1996—),女,硕士研究生,研究方向为非常规石油分离过程。E-mail:基金资助:
CLC Number:
ZHANG Xueying, MA Jun, HE Lin, SUI Hong, LI Xingang. Molecular structure of interfacially active asphaltene in asphalt rock and its adsorption characteristics on mineral surface[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 628-636.
章雪莹, 马俊, 何林, 隋红, 李鑫钢. 沥青岩中界面活性沥青质分子结构及其在矿物表面吸附特征[J]. 化工进展, 2022, 41(2): 628-636.
样品 | 元素(质量分数)/% | H/C | |||||
---|---|---|---|---|---|---|---|
C | H | N | S | O | 总计 | ||
IAA | 73.01 | 7.64 | 0.98 | 9.83 | 4.60 | 96.06 | — |
IAA(归一化) | 76.00 | 7.95 | 1.02 | 10.23 | 4.80 | 100.00 | 1.26 |
样品 | 元素(质量分数)/% | H/C | |||||
---|---|---|---|---|---|---|---|
C | H | N | S | O | 总计 | ||
IAA | 73.01 | 7.64 | 0.98 | 9.83 | 4.60 | 96.06 | — |
IAA(归一化) | 76.00 | 7.95 | 1.02 | 10.23 | 4.80 | 100.00 | 1.26 |
氢的类型 | 化学位移/mg·L-1 | 相对含量 |
---|---|---|
Haro | 10.0~6.0 | 0.0647 |
Hali | 4.0~0.4 | 0.9353 |
Hα | 4.0~2.0 | 0.1707 |
Hβ | 2.0~1.0 | 0.6014 |
Hγ | 1.0~0.4 | 0.1632 |
氢的类型 | 化学位移/mg·L-1 | 相对含量 |
---|---|---|
Haro | 10.0~6.0 | 0.0647 |
Hali | 4.0~0.4 | 0.9353 |
Hα | 4.0~2.0 | 0.1707 |
Hβ | 2.0~1.0 | 0.6014 |
Hγ | 1.0~0.4 | 0.1632 |
符号 | 结构参数 | 公式 | 结果 |
---|---|---|---|
fA | 芳碳率 | 0.4128 | |
HAU/CA | 芳香环系缩合度 | 0.4564 | |
σ | 芳香环系周边氢取代率 | 0.5688 | |
CA | 芳香碳数 | 56.83 | |
CS | 饱和碳数 | 80.85 | |
RA | 芳香环数 | 17.61 | |
RT | 总环数 | 23.82 | |
RN | 环烷烃环数 | 6.21 | |
CN | 环烷烃碳数 | 18.63 | |
n | 结构单元数 | 1.89 | |
RS | 芳香环系烷基取代基数 | 7.81 |
符号 | 结构参数 | 公式 | 结果 |
---|---|---|---|
fA | 芳碳率 | 0.4128 | |
HAU/CA | 芳香环系缩合度 | 0.4564 | |
σ | 芳香环系周边氢取代率 | 0.5688 | |
CA | 芳香碳数 | 56.83 | |
CS | 饱和碳数 | 80.85 | |
RA | 芳香环数 | 17.61 | |
RT | 总环数 | 23.82 | |
RN | 环烷烃环数 | 6.21 | |
CN | 环烷烃碳数 | 18.63 | |
n | 结构单元数 | 1.89 | |
RS | 芳香环系烷基取代基数 | 7.81 |
浓度/mg·L-1 | IAA | 沥青质 | ||||
---|---|---|---|---|---|---|
k1 | k2 | R2 | k1 | k2 | R2 | |
2 | 0.00156 | 2.03E-08 | 0.99 | 0.003844 | 0.000968 | 0.99 |
5 | 0.00667 | 0.000966 | 0.99 | 0.005468 | 0.000967 | 0.99 |
10 | 0.00786 | 0.000383 | 0.99 | 0.009055 | 0.001402 | 0.99 |
20 | 0.00815 | 0.000823 | 0.98 | 0.012364 | 0.002053 | 0.99 |
50 | 0.00846 | 0.000743 | 0.98 | 0.021559 | 0.004414 | 0.99 |
100 | 0.02210 | 0.000689 | 0.99 | 0.033569 | 0.006589 | 0.99 |
浓度/mg·L-1 | IAA | 沥青质 | ||||
---|---|---|---|---|---|---|
k1 | k2 | R2 | k1 | k2 | R2 | |
2 | 0.00156 | 2.03E-08 | 0.99 | 0.003844 | 0.000968 | 0.99 |
5 | 0.00667 | 0.000966 | 0.99 | 0.005468 | 0.000967 | 0.99 |
10 | 0.00786 | 0.000383 | 0.99 | 0.009055 | 0.001402 | 0.99 |
20 | 0.00815 | 0.000823 | 0.98 | 0.012364 | 0.002053 | 0.99 |
50 | 0.00846 | 0.000743 | 0.98 | 0.021559 | 0.004414 | 0.99 |
100 | 0.02210 | 0.000689 | 0.99 | 0.033569 | 0.006589 | 0.99 |
1 | BENCHEKROUN H, MEIJDEN G VAN DER, OPEC WITHAGEN C., unconventional oil and climate change—On the importance of the order of extraction[J]. Journal of Environmental Economics and Management, 2020, 104: 102384. |
2 | 李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探, 2020, 25(2): 1-13. |
LI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2): 1-13. | |
3 | RAO F, LIU Q. Froth treatment in athabasca oil sands bitumen recovery process: a review[J]. Energy & Fuels, 2013, 27(12): 7199-7207. |
4 | BUKKA K, MILLER J D, HANSON F V, et al. Fractionation and characterization of whiterocks tar-sand bitumen[J]. Energy & Fuels, 1992, 6(2): 160-165. |
5 | YANG F, TCHOUKOV P, PENSINI E, et al. Asphaltene subfractions responsible for stabilizing water-in-crude oil emulsions. Part 1: interfacial behaviors[J]. Energy & Fuels, 2014, 28(11): 6897-6904. |
6 | YANG F, TCHOUKOV P, DETTMAN H, et al. Asphaltene subfractions responsible for stabilizing water-in-crude oil emulsions. Part 2. Molecular representations and molecular dynamics simulations[J]. Energy & Fuels, 2015, 29(8): 4783-4794. |
7 | YEUNG A, DABROS T, CZARNECKI J, et al. On the interfacial properties of micrometre-sized water droplets in crude oil[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 455(1990): 3709-3723. |
8 | YANG X L, VERRUTO V J, KILPATRICK P K. Dynamic asphaltene-resin exchange at the oil/water interface: time-dependent W/O emulsion stability for asphaltene/resin model oils[J]. Energy & Fuels, 2007, 21(3): 1343-1349. |
9 | KILPATRICK P K. Water-in-crude oil emulsion stabilization: review and unanswered questions[J]. Energy & Fuels, 2012, 26(7): 4017-4026. |
10 | QIAO P Q, HARBOTTLE D, TCHOUKOV P, et al. Asphaltene subfractions responsible for stabilizing water-in-crude oil emulsions. Part 3. Effect of solvent aromaticity[J]. Energy & Fuels, 2017, 31(9): 9179-9187. |
11 | HE L, LIN F, LI X, et al. Interfacial sciences in unconventional petroleum production: from fundamentals to applications[J]. Chemical Society Reviews, 2015, 44(15): 5446-5494. |
12 | GONG L, WANG J Y, ZHANG L, et al. Fouling mechanisms of asphaltenes and fine solids on bare and electroless nickel-phosphorus coated carbon steel[J]. Fuel, 2019, 252: 188-199. |
13 | ADAMS J J. Asphaltene adsorption, a literature review[J]. Energy & Fuels, 2014, 28(5): 2831-2856. |
14 | Test method for determination of asphaltenes (heptane insolubles) in crude petroleum and petroleum products: [S]. 2000. |
15 | DUDÁŠOVÁ D, SILSET A, SJÖBLOM J. Quartz crystal microbalance monitoring of asphaltene adsorption/deposition[J]. Journal of Dispersion Science and Technology, 2008, 29(1): 139-146. |
16 | GONG L, ZHANG L, XIANG L, et al. Surface interactions between water-in-oil emulsions with asphaltenes and electroless nickel-phosphorus coating[J]. Langmuir, 2020, 36(4): 897-905. |
17 | 李传, 王继乾, 隋李涛, 等. 委内瑞拉稠油沥青质的XPS研究[J]. 石油学报(石油加工), 2013, 29(3): 459-463. |
LI Chuan, WANG Jiqian, SUI Litao, et al. Study on XPS of Venezuela heavy oil asphaltene[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29(3): 459-463. | |
18 | MCKENNA A M, MARSHALL A G, RODGERS R P. Heavy petroleum composition. 4. Asphaltene compositional space[J]. Energy & Fuels, 2013, 27(3): 1257-1267. |
19 | SISKIN M, KELEMEN S R, EPPIG C P, et al. Asphaltene molecular structure and chemical influences on the morphology of coke produced in delayed coking[J]. Energy & Fuels, 2006, 20(3): 1227-1234. |
20 | RUIZ-MORALES Y, MIRANDA-OLVERA A D, PORTALES-MARTÍNEZ B, et al. Determination of 13C NMR chemical shift structural ranges for polycyclic aromatic hydrocarbons (PAHs) and PAHs in asphaltenes: an experimental and theoretical density functional theory study[J]. Energy & Fuels, 2019, 33(9): 7950-7970. |
21 | WANG Q, JIA C X, GE J X, et al. 1H NMR and 13C NMR studies of oil from pyrolysis of Indonesian oil sands[J]. Energy & Fuels, 2016, 30(3): 2478-2491. |
22 | MARLOW B J, SRESTY G C, HUGHES R D, et al. Colloidal stabilization of clays by asphaltenes in hydrocarbon media[J]. Colloids and Surfaces, 1987, 24(4): 283-297. |
23 | SULLIVAN A P, KILPATRICK P K. The effects of inorganic solid particles on water and crude oil emulsion stability[J]. Industrial & Engineering Chemistry Research, 2002, 41(14): 3389-3404. |
24 | QIAO P, HARBOTTLE D, LI Z, et al. Interactions of asphaltene subfractions in organic media of varying aromaticity[J]. Energy & Fuels, 2018, 32(10): 10478-10485. |
25 | ROBATI D, BAGHERIYAN S, RAJABI M, et al. Effect of electrostatic interaction on the methylene blue and methyl orange adsorption by the pristine and functionalized carbon nanotubes[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 83: 1-6. |
26 | SUBRAMANIAN S, SIMON S, GAO B C, et al. Asphaltene fractionation based on adsorption onto calcium carbonate: Part 1. Characterization of sub-fractions and QCM-D measurements[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 495: 136-148. |
27 | LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403. |
28 | AL-GHOUTI M A, DA’ANA D A. Guidelines for the use and interpretation of adsorption isotherm models: a review[J]. Journal of Hazardous Materials, 2020, 393: 122383. |
29 | FREDRIKSSON C, KIHLMAN S, RODAHL M, et al. The piezoelectric quartz crystal mass and dissipation sensor: a means of studying cell adhesion[J]. Langmuir, 1998, 14(2): 248-251. |
30 | DANIEL OU-YANG H, GAO Z H. A pancake-to-brush transition in polymer adsorption[J]. Journal De Physique Ⅱ, 1991, 1(11): 1375-1385. |
31 | CHEN Z Q, LI Z G. Preparation and stabilisation mechanism of asphalt-in-water Pickering emulsion stabilised by SiO2 nanoparticles[J]. Road Materials and Pavement Design, 2020, 22(7): 1679-1691. |
32 | FOSSEN M, KALLEVIK H, KNUDSEN K D, et al. Asphaltenes precipitated by a two-step precipitation procedure.1. Interfacial tension and solvent properties[J]. Energy & Fuels, 2007, 21(2): 1030-1037. |
33 | FISCHER H, STADLER H, ERINA N. Quantitative temperature-depending mapping of mechanical properties of bitumen at the nanoscale using the AFM operated with PeakForce Tapping TM mode[J]. Journal of Microscopy, 2013, 250(3): 210-217. |
34 | LIU J, CUI X, HUANG J, et al. Understanding the stabilization mechanism of bitumen-coated fine solids in organic media from non-aqueous extraction of oil sands[J]. Fuel, 2019, 242: 255-264. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[4] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[5] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[6] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[7] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[8] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[9] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[10] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[11] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[12] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[13] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[14] | WANG Zhicai, LIU Weiwei, ZHOU Cong, PAN Chunxiu, YAN Honglei, LI Zhanku, YAN Jingchong, REN Shibiao, LEI Zhiping, SHUI Hengfu. Synthesis and performance of a superplasticizer based on coal-based humic acid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3634-3642. |
[15] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 394
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 306
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |