Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (8): 4327-4345.DOI: 10.16085/j.issn.1000-6613.2020-1848
• Materials science and technology • Previous Articles Next Articles
YUAN Yuting1(), FENG Yongchao1, YI Honghong1,2(), TANG Xiaolong1,2, YU Qingjun1,2, ZHANG Yuanyuan1, WEI Jinghui1, MENG Xianzheng1
Received:
2020-09-14
Online:
2021-08-12
Published:
2021-08-05
Contact:
YI Honghong
袁雨婷1(), 冯勇超1, 易红宏1,2(), 唐晓龙1,2, 于庆君1,2, 张媛媛1, 隗晶慧1, 孟宪政1
通讯作者:
易红宏
作者简介:
袁雨婷(1995—),女,硕士研究生,研究方向为大气污染控制。E-mail:基金资助:
CLC Number:
YUAN Yuting, FENG Yongchao, YI Honghong, TANG Xiaolong, YU Qingjun, ZHANG Yuanyuan, WEI Jinghui, MENG Xianzheng. Research progress of superhydrophobic surface materials and its application in air pollution control[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4327-4345.
袁雨婷, 冯勇超, 易红宏, 唐晓龙, 于庆君, 张媛媛, 隗晶慧, 孟宪政. 体相超疏水材料及其在大气污染控制领域的应用研究进展[J]. 化工进展, 2021, 40(8): 4327-4345.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1848
1 | ZHANG X H, XU S Q. Preparation and applications of super-hydrophobic materials[J]. MATEC Web of Conferences, 2018, 175: 01012. |
2 | DORRER C, RÜHE J. Some thoughts on superhydrophobic wetting[J]. Soft Matter, 2009, 5(1): 51-61. |
3 | DONG H Y, CHENG M J, ZHANG Y J, et al. Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed[J]. Journal of Materials Chemistry A, 2013, 1(19): 5886-5891. |
4 | WANG G, ZENG Z, WANG H, et al. Low drag porous ship with superhydrophobic and superoleophilic surface for oil spills cleanup[J]. ACS Applied Materials and Interfaces, 2015, 7(47): 26184-26194. |
5 | QIAN H C, XU D K, DU C W, et al. Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties[J]. Journal of Materials Chemistry A, 2017, 5(5): 2355-2364. |
6 | FORT JR T. Adsorption and boundary friction on polymer surfaces[J]. The Journal of Physical Chemistry, 1962, 66(6): 1136-1143. |
7 | DAS S, KUMAR S, SAMAL S K, et al. A review on superhydrophobic polymer nanocoatings: recent development and applications[J]. Industrial and Engineering Chemistry Research, 2018, 57(8): 2727-2745. |
8 | ZHANG W B, SHI Z, ZHANG F, et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux[J]. Advanced Materials, 2013, 25(14): 2071-2076. |
9 | WANG Y Y, XUE J, WANG Q J, et al. Verification of icephobic/anti-icing properties of a superhydrophobic surface[J]. ACS Applied Materials and Interfaces, 2013, 5(8): 3370-3381. |
10 | WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28(8): 988-994. |
11 | WENZEL R N. Surface roughness and contact angle[J]. The Journal of Physical and Colloid Chemistry, 1949, 53(9): 1466-1467. |
12 | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
13 | CASSIE A B D. Contact angles[J]. Discussions of the Faraday Society, 1948, 3: 11-16. |
14 | WANG S T, JIANG L. Definition of superhydrophobic states[J]. Advanced Materials, 2007, 19(21): 3423-3424. |
15 | LIN D M, ZENG X R, LI H Q, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019, 533: 198-206. |
16 | ZHANG L B, CHEN H, SUN J Q, et al. Layer-by-layer deposition of poly(diallyldimethylammonium chloride) and sodium silicate multilayers on silica-sphere-coated substrate—facile method to prepare a superhydrophobic surface[J]. Chemistry of Materials, 2007, 19(4): 948-953. |
17 | DARMANIN T, TAFFIN D G E, AMIGONI S, et al. Superhydrophobic surfaces by electrochemical processes[J]. Adv. Mater., 2013, 25(10): 1378-1394. |
18 | REZAEI S, MANOUCHERI I, MORADIAN R, et al. One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication[J]. Chemical Engineering Journal, 2014, 252: 11-16. |
19 | SONG X Y, ZHAI J, WANG Y L, et al. Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties[J]. The Journal of Physical Chemistry B, 2005, 109(9): 4048-4052. |
20 | WANG X F, DING B, YU J Y, et al. Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials[J]. Nano Today, 2011, 6(5): 510-530. |
21 | CHENG Y, ZHU T X, LI S H, et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching[J]. Chemical Engineering Journal, 2019, 355: 290-298. |
22 | FENG J S, TUOMINEN M T, ROTHSTEIN J P. Hierarchical superhydrophobic surfaces fabricated by dual-scale electron-beam-lithography with well-ordered secondary nanostructures[J]. Advanced Functional Materials, 2011, 21(19): 3715-3722. |
23 | ZHANG Q B, ZHANG K L, XU D G, et al. CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications[J]. Progress in Materials Science. 2014, 60: 208-337. |
24 | NGUYEN D D, TAI N H, LEE S B, et al. Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method[J]. Energy and Environmental Science, 2012, 5(7): 7908. |
25 | LIU H, HUANG J Y, CHEN Z, et al. Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation[J]. Chemical Engineering Journal, 2017, 330: 26-35. |
26 | XU L B, KARUNAKARAN R G, GUO J, et al. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles[J]. ACS Applied Materials and Interfaces, 2012, 4(2): 1118-1125. |
27 | TAURINO R, FABBRI E, POSPIECH D, et al. Preparation of scratch resistant superhydrophobic hybrid coatings by sol-gel process[J]. Progress in Organic Coatings, 2014, 77(11): 1635-1641. |
28 | WANG S H, GUO X W, XIE Y J, et al. Preparation of superhydrophobic silica film on Mg-Nd-Zn-Zr magnesium alloy with enhanced corrosion resistance by combining micro-arc oxidation and sol-gel method[J]. Surface and Coatings Technology, 2012, 213: 192-201. |
29 | LI H, YANG J, LI P, et al. A facile method for preparation superhydrophobic paper with enhanced physical strength and moisture-proofing property[J]. Carbohydrate Polymers, 2017, 160: 9-17. |
30 | LI H, WANG X, HE Y Q, et al. Facile preparation of fluorine-free superhydrophobic/superoleophilic paper via layer-by-layer deposition for self-cleaning and oil/water separation[J]. Cellulose, 2019, 26(3): 2055-2074. |
31 | WANG H Y, HU Z Y, ZHU Y X, et al. Toward easily enlarged superhydrophobic materials with stain-resistant, oil-water separation and anticorrosion function by a water-based one-step electrodeposition method[J]. Industrial and Engineering Chemistry Research, 2017, 56(4): 933-941. |
32 | ZHANG F, SHI Z W, CHEN L S, et al. Porous superhydrophobic and superoleophilic surfaces prepared by template assisted chemical vapor deposition[J]. Surface and Coatings Technology, 2017, 315: 385-390. |
33 | JIANG H J, ZHANG L, CHEN J, et al. Hierarchical self-assembly of a porphyrin into chiral macroscopic flowers with superhydrophobic and enantioselective property[J]. ACS Nano, 2017, 11(12): 12453-12460. |
34 | ZHOU X, LEE Y Y, CHONG K S L, et al. Superhydrophobic and slippery liquid-infused porous surfaces formed by the self-assembly of a hybrid ABC triblock copolymer and their antifouling performance[J]. Journal of Materials Chemistry B, 2018, 6(3): 440-448. |
35 | RADWAN A B, MOHAMED A M A, ABDULLAH A M, et al. Corrosion protection of electrospun PVDF-ZnO superhydrophobic coating[J]. Surface and Coatings Technology, 2016, 289: 136-143. |
36 | DOU W W, WU J J, GU T Y, et al. Preparation of super-hydrophobic micro-needle CuO surface as a barrier against marine atmospheric corrosion[J]. Corrosion Science, 2018, 131: 156-163. |
37 | CHO S W, KIM J H, LEE H M, et al. Superhydrophobic Si surfaces having microscale rod structures prepared in a plasma etching system[J]. Surface and Coatings Technology, 2016, 306: 82-86. |
38 | CHEN Y P, WANG H W, YAO Q F, et al. Biomimetic taro leaf-like films decorated on wood surfaces using soft lithography for superparamagnetic and superhydrophobic performance[J]. Journal of Materials Science, 2017, 52(12): 7428-7438. |
39 | LIU C J, FENG X Y, LI N, et al. Super-hydrophobic Co3O4-loaded nickel foam with corrosion-resistant property prepared by combination of hydrothermal synthesis and PFAS modification[J]. Surface and Coatings Technology, 2017, 309: 1111-1118. |
40 | CAO C Y, CHENG J. Fabrication of superhydrophobic copper stearate@ Fe3O4 coating on stainless steel meshes by dip-coating for oil/water separation[J]. Surface and Coatings Technology, 2018, 349: 296-302. |
41 | LI H, ZHAO X Y, WU P F, et al. Facile preparation of superhydrophobic and superoleophilic porous polymer membranes for oil/water separation from a polyarylester polydimethylsiloxane block copolymer[J]. Journal of Materials Science, 2016, 51(6): 3211-3218. |
42 | LONG M Y, PENG S, DENG W S, et al. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane[J]. Journal of Colloid and Interface Science, 2017, 508: 18-27. |
43 | JEEVAHAN J, CHANDRASEKARAN M, BRITTO JOSEPH G, et al. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges[J]. Journal of Coatings Technology and Research, 2018, 15(2): 231-250. |
44 | LI Y, LIU F, SUN J. A facile layer-by-layer deposition process for the fabrication of highly transparent superhydrophobic coatings[J]. Chemical Communications, 2009(19): 2730. |
45 | NIMITTRAKOOLCHAI O U, SUPOTHINA S. Deposition of organic-based superhydrophobic films for anti-adhesion and self-cleaning applications[J]. Journal of the European Ceramic Society, 2008, 28(5): 947-952. |
46 | CHOY K L. Chemical vapour deposition of coatings[J]. Progress in Materials Science, 2003, 48(2): 57-170. |
47 | YIN S H, WU D X, YANG J, et al. Fabrication and surface characterization of biomimic superhydrophobic copper surface by solution-immersion and self-assembly[J]. Applied Surface Science, 2011, 257(20): 8481-8485. |
48 | QIAN B, SHEN Z. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates[J]. Langmuir, 2005, 21(20): 9007-9009. |
49 | 赵晓非,杨明全,章磊,等. 仿生超疏水表面的制备与应用的研究进展[J]. 化工进展, 2016, 35(9): 2818-2829. |
ZHAO Xiaofei, YANG Mingquan, ZHANG Lei, et al. Research progress in fabrication and application of bioinspired super-hydrophobic surface[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2818-2829. | |
50 | KUMAR A, NANDA D. Chapter 3-methods and fabrication techniques of superhydrophobic surfaces[M]. Superhydrophobic Polymer Coatings, Amsterdam: Elsevier, 2019: 43-75. |
51 | LI L J, ZHANG Y Z, LEI J L, et al. A facile approach to fabricate superhydrophobic Zn surface and its effect on corrosion resistance[J]. Corrosion Science, 2014, 85: 174-182. |
52 | GURAV A B, XU Q F, LATTHE S S, et al. Superhydrophobic coatings prepared from methyl-modified silica particles using simple dip-coating method[J]. Ceramics International, 2015, 41(2): 3017-3023. |
53 | 赵美蓉,周惠言,康文倩,等. 超疏水表面制备方法的比较[J]. 复合材料学报, 2021, 38(2): 361-379. |
ZHAO Meirong, ZHOU Huiyan, KANG Wenqian, et al. A comparison of methods for fabricating superhydrophobic surface[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 361-379. | |
54 | WAN Y X, CHEN M J, LIU W, et al. The research on preparation of superhydrophobic surfaces of pure copper by hydrothermal method and its corrosion resistance[J]. Electrochimica Acta, 2018, 270: 310-318. |
55 | LIU M L, LUO Y F, JIA D M. Fabrication of a versatile composite material with three-dimensional superhydrophobic for aquatic show[J]. Chemical Engineering Journal, 2020, 398: 125362. |
56 | ZHANG L, LI H Q, LAI X J, et al. Thiolated graphene-based superhydrophobic sponges for oil-water separation[J]. Chemical Engineering Journal, 2017, 316: 736-743. |
57 | LI L J, RONG L D, XU Z T, et al. Cellulosic sponges with pH responsive wettability for efficient oil-water separation[J]. Carbohydrate Polymer, 2020, 237: 116133. |
58 | EZAZI M, SHRESTHA B, KLEIN N, et al. Self-healable superomniphobic surfaces for corrosion protection[J]. ACS Applied Materials and Interfaces, 2019, 11(33): 30240-30246. |
59 | CAI Y H, CHEN D Y, LI N J, et al. Superhydrophobic metal–organic framework membrane with self-repairing for high-efficiency oil/water emulsion separation[J]. ACS Sustainable Chemistry and Engineering, 2019, 7(2): 2709-2717. |
60 | PAN S Y, CHEN M, WU L M. Smart superhydrophobic surface with restorable microstructure and self-healable surface chemistry[J]. ACS Applied Materials and Interfaces, 2020, 12(4): 5157-5165. |
61 | GUO H, LEE S C, CHAN L Y, et al. Risk assessment of exposure to volatile organic compounds in different indoor environments[J]. Environmental Research, 2004, 94(1): 57-66. |
62 | LI L, LIU S Q, LIU J X. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal[J]. Journal of Hazardous Materials, 2011, 192(2): 683-690. |
63 | PODDAR T K, SIRKAR K K. A hybrid of vapor permeation and membrane-based absorption-stripping for VOC removal and recovery from gaseous emissions[J]. Journal of Membrane Science, 1997, 132(2): 229-233. |
64 | BELAISSAOUI B, MOULLEC Y L, FAVRE E, et al. Energy efficiency of a hybrid membrane/condensation process for VOC (volatile organic compounds) recovery from air: a generic approach[J]. Energy, 2016, 95: 291-302. |
65 | ARULNEYAM D, SWAMINATHAN T. Biodegradation of mixture of VOC’s in a biofilter[J]. Journal of Environmental Sciences-China, 2004, 16(1): 30-33. |
66 | CHEN K Y, ZHU L Z, YANG K. Tricrystalline TiO2 with enhanced photocatalytic activity and durability for removing volatile organic compounds from indoor air[J]. Journal of Environmental Sciences, 2015, 32: 189-195. |
67 | KOUTSOSPYROS A D, YIN S M, CHRISTODOULATOS C, et al. Plasmochemical degradation of volatile organic compounds (VOC) in a capillary discharge plasma reactor[C]//IEEE Transactions on Plasma Science, 2005, 33(1): 42-49. |
68 | KRAUS M, TROMMLER U, HOLZER F, et al. Competing adsorption of toluene and water on various zeolites[J]. Chemical Engineering Journal, 2018, 351: 356-363. |
69 | 郭秋敏. 非均匀气液成核及纳米颗粒在气液界面稳定性的密度泛函理论研究[D]. 北京:北京化工大学, 2013. |
GUO Qiumin. Heterogeneous vapor-liquid nucleation and stability of nanoparticles at the vapor-liquid interface: a density functional theory study[D]. Beijing: Beijing University of Chemical Technology, 2013. | |
70 | LI R N, CHONG S J, ALTAF N, et al. Synthesis of ZSM-5/siliceous zeolite composites for improvement of hydrophobic adsorption of volatile organic compounds[J]. Frontiers in Chemistry, 2019, 7: 505. |
71 | BOINOVICH L B, EMELYANENKO A M, PASHININ A S, et al. Origins of thermodynamically stable superhydrophobicity of boron nitride nanotubes coatings[J]. Langmuir, 2012, 28(2): 1206-1216. |
72 | ZHU X, FENG S S, ZHAO S F, et al. Perfluorinated superhydrophobic and oleophobic SiO2@PTFE nanofiber membrane with hierarchical nanostructures for oily fume purification[J]. Journal of Membrane Science, 2020, 594: 117473. |
73 | WANG J H, WANG W Q, HAO Z P, et al. A superhydrophobic hyper-cross-linked polymer synthesized at room temperature used as an efficient adsorbent for volatile organic compounds[J]. RSC Advances, 2016, 6(99): 97048-97054. |
74 | YAN Z J, REN H, MA H P, et al. Construction and sorption properties of pyrene-based porous aromatic frameworks[J]. Microporous and Mesoporous Materials, 2013, 173: 92-98. |
75 | SHIN H C, PARK J W, PARK K, et al. Removal characteristics of trace compounds of landfill gas by activated carbon adsorption[J]. Environmental Pollution, 2002, 119(2): 227-236. |
76 | WANG J H, WANG G, WANG W Q, et al. Hydrophobic conjugated microporous polymer as a novel adsorbent for removal of volatile organic compounds[J]. Journal of Materials Chemistry A, 2014, 2(34): 14028-14037. |
77 | WANG W Q, WANG J H, CHEN J G, et al. Synthesis of novel hyper-cross-linked polymers as adsorbent for removing organic pollutants from humid streams[J]. Chemical Engineering Journal, 2015, 281: 34-41. |
78 | HU Q, DOU B J, TIAN H, et al. Mesoporous silicalite-1 nanospheres and their properties of adsorption and hydrophobicity[J]. Microporous and Mesoporous Materials, 2010, 129(1/2): 30-36. |
79 | DOU B J, LI J J, WANG Y F, et al. Adsorption and desorption performance of benzene over hierarchically structured carbon-silica aerogel composites[J]. Journal of Hazardous Materials, 2011, 196: 194-200. |
80 | ALLEN M R, BRAITHWAITE A, HILLS C C. Trace organic compounds in landfill gas at seven U.K. waste disposal sites[J]. Environmental Science and Technology, 1997, 31(4): 1054-1061. |
81 | TURKIN A A, DUTKA M, VAINCHTEIN D, et al. Deposition of SiO2 nanoparticles in heat exchanger during combustion of biogas[J]. Applied Energy, 2014, 113: 1141-1148. |
82 | BAK C U, LIM C J, LEE J G, et al. Removal of sulfur compounds and siloxanes by physical and chemical sorption[J]. Separation and Purification Technology, 2019, 209: 542-549. |
83 | SCHWEIGKOFLER M, NIESSNER R. Removal of siloxanes in biogases[J]. Journal of Hazardous Materials, 2001, 83(3): 183-196. |
84 | JUNG H, LEE D Y, JURNG J. Low-temperature regeneration of novel polymeric adsorbent on decamethylcyclopentasiloxane (D5) removal for cost-effective purification of biogases from siloxane[J]. Renewable Energy, 2017, 111: 718-723. |
85 | GISLON P, GALLI S, MONTELEONE G. Siloxanes removal from biogas by high surface area adsorbents[J]. Waste Management, 2013, 33(12): 2687-2693. |
86 | ZHANG Y C, ZOU G S, LIU L, et al. Time-dependent wettability of nano-patterned surfaces fabricated by femtosecond laser with high efficiency[J]. Applied Surface Science, 2016, 389: 554-559. |
87 | KIETZIG A M, HATZIKIRIAKOS S G, ENGLEZOS P. Patterned superhydrophobic metallic surfaces[J]. Langmuir, 2009, 25(8):4821-4827. |
88 | GARGIULO N, PELUSO A, APREA P, et al. Chromium-based MIL-101 metal organic framework as a fully regenerable D4 adsorbent for biogas purification[J]. Renewable Energy, 2019, 138: 230-235. |
89 | LIU Y H, MENG Z Y, WANG J Y, et al. Removal of siloxanes from biogas using acetylated silica gel as adsorbent[J]. Petroleum Science, 2019, 16(4): 920-928. |
90 | MENG Z Y, LIU Y H, LI X, et al. Removal of siloxane (L2) from biogas using methyl-functionalised silica gel as adsorbent[J]. Chemical Engineering Journal, 2020, 389: 124440. |
91 | YAN X, HUANG Z, SETT S, et al. Atmosphere-mediated superhydrophobicity of rationally designed micro/nanostructured surfaces[J]. ACS Nano, 2019, 13(4): 4160-4173. |
92 | ANDREEVA N, ISHIZAKI T, BAROCH P, et al. High sensitive detection of volatile organic compounds using superhydrophobic quartz crystal microbalance[J]. Sensors and Actuators B: Chemical, 2012, 164(1): 15-21. |
93 | ESMERYAN K D, YORDANOV T A, VERGOV L G, et al. Humidity tolerant organic vapor detection using a superhydrophobic quartz crystal microbalance[J]. IEEE Sensors Journal, 2015, 15(11): 6318-6325. |
94 | WANG L Y, CHA X L, WU Y L, et al. Superhydrophobic polymerized n-octadecylsilane surface for BTEX sensing and stable toluene/water selective detection based on QCM sensor[J]. ACS Omega, 2018, 3(2): 2437-2443. |
95 | CHEN Y, WANG L Y, KONG J W, et al. Superhydrophobic hierarchical porous divinylbenzene polymer for BTEX sensing and toluene/water selective detection[J]. Chinese Chemical Letters, 2020, 31(8): 2125-2128. |
96 | PU Y J, XIE X Y, JIANG W J, et al. Low-temperature selective catalytic reduction of NOx with NH3 over zeolite catalysts: a review[J]. Chinese Chemical Letters, 2020, 31(10): 2549-2555. |
97 | KANG Z Z, YUAN Q X, ZHAO L Z, et al. Study of the performance, simplification and characteristics of SNCR de-NOx in large-scale cyclone separator[J]. Applied Thermal Engineering, 2017, 123: 635-645. |
98 | 于伟. 超疏水消氢催化剂涂层及膜反应器的研究[D]. 上海:华东理工大学, 2017. |
YU Wei. Superhydrophobic catalyst coating for hydrogen mitigation and superhydrophobic ceramic membrane contactor[D]. Shanghai: East China University of Science and Technology, 2017. | |
99 | KARTOHARDJONO S, SAKSONO N, SUPRAMONO D, et al. NOx removal from air through super hydrophobic hollow fiber membrane contactors[J]. International Journal of Technology, 2019, 10(3): 472-480. |
100 | BOUTAMINE M, BELLEL A, SAHLI S, et al. Hexamethyldisiloxane thin films as sensitive coating for quartz crystal microbalance based volatile organic compounds sensors[J]. Thin Solid Films, 2014, 552: 196-203. |
101 | ESMERYAN K D, GEORGIEVA V, VERGOV L, et al. A superhydrophobic quartz crystal microbalance based chemical sensor for NO2 detection[J]. Izvestiya Po Khimiya Bulgarska Akademiya Na Naukite, 2015, 47: 1039-1044. |
102 | WU J, LI Z, XIE X, et al. 3D superhydrophobic reduced graphene oxide for activated NO2 sensing with enhanced immunity to humidity[J]. Journal of Materials Chemistry A, 2018, 6(2): 478-488. |
103 | 杨德祥, 余龙红, 吴雷. 催化烟气湿法洗涤脱硫技术探讨[J]. 石油化工设计, 2008, 25(3): 1-4. |
YANG Dexiang, YU Longhong, WU Lei. Discussion on FCC flue gas wet scrubber desulfurization technology[J]. Petrochemical Design, 2008, 25(3): 1-4. | |
104 | ARIONO D, SIAGIAN U W R, WARDANI A K, et al. SO2 Removal from the flue gas by hollow fibre membrane contactor[J]. MATEC Web of Conferences, 2018, 156: 08007. |
105 | LI Y N, HAO Y C, YE H, et al. Single-sided superhydrophobic fluorinated silica/poly(ether sulfone) membrane for SO2 absorption[J]. Journal of Membrane Science, 2019, 580: 190-201. |
106 | YOU X, WU J J, CHI Y W. Superhydrophobic silica aerogels encapsulated fluorescent perovskite quantum dots for reversible sensing of SO2 in a 3D-printed gas cell[J]. Analytical Chemistry, 2019, 91(8): 5058-5066. |
107 | ZHOU C, CHEN Y M, SHANG P X, et al. Strong electrochemiluminescent interactions between carbon nitride nanosheet-reduced graphene oxide nanohybrids and folic acid, and ultrasensitive sensing for folic acid[J]. Analyst, 2016, 141(11): 3379-3388. |
108 | World Health Organization. Air quality guidelines: global update 2005: particulate matter, ozone, dioxidenitrogen, and sulfur dioxide[R]. World Health Organization, 2006. |
109 | LU X, ZHANG S J, XING J, et al. Progress of air pollution control in China and its challenges and opportunities in the ecological civilization era[J]. Engineering, 2020, 6(12): 1423-1431. |
110 | SAMANTA A, ZHAO A, SHIMIZU G K H, et al. Post-combustion CO2 capture using solid sorbents: a review[J]. Industrial and Engineering Chemistry Research, 2012, 51(4): 1438-1463. |
111 | YOUSEF A M, EL-MAGHLANY W M, ELDRAINY Y A, et al. New approach for biogas purification using cryogenic separation and distillation process for CO2 capture[J]. Energy, 2018, 156: 328-351. |
112 | BRUNETTI A, SCURA F, BARBIERI G, et al. Membrane technologies for CO2 separation[J]. Journal of Membrane Science, 2010, 359(1): 115-125. |
113 | YU X H, AN L, YANG J, et al. CO2 capture using a superhydrophobic ceramic membrane contactor[J]. Journal of Membrane Science, 2015, 496: 1-12. |
114 | AHMAD A L, MOHAMMED H N, OOI B S, et al. Deposition of a polymeric porous superhydrophobic thin layer on the surface of poly(vinylidenefluoride) hollow fiber membrane[J]. Polish Journal of Chemical Technology, 2013, 15(3): 1-6. |
115 | HIMMA N F, WENTEN I G. Superhydrophobic membrane contactor for acid gas removal[J]. Journal of Physics: Conference Series, 2017, 877: 012010. |
116 | WU X N, ZHAO B, WANG L, et al. Superhydrophobic PVDF membrane induced by hydrophobic SiO2 nanoparticles and its use for CO2 absorption[J]. Separation and Purification Technology, 2018, 190: 108-116. |
117 | LI S G, ROCHA D J, JAMES ZHOU S, et al. Post-combustion CO2 capture using super-hydrophobic, polyether ether ketone, hollow fiber membrane contactors[J]. Journal of Membrane Science, 2013, 430: 79-86. |
118 | NANDI S, WERNER-ZWANZIGER U, VAIDHYANATHAN R, et al. A triazine-resorcinol based porous polymer with polar pores and exceptional surface hydrophobicity showing CO2 uptake under humid conditions[J]. Journal of Materials Chemistry A, 2015, 3(42): 21116-21122. |
119 | ZHU X, MAHURIN S M, AN S H, et al. Efficient CO2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups[J]. Chemical Communications, 2014, 50(59): 7933-7936. |
120 | RAO K P, DEVI Y K, SURYACHANDRAM J, et al. A dense I1O3 hybrid superhydrophobic network, Pb(H-BTMB), exhibits selectivity toward CO2 gas sorption[J]. Inorganic Chemistry, 2017, 56(18): 11184-11189. |
121 | NORO S, NAKAMURA T. Fluorine-functionalized metal-organic frameworks and porous coordination polymers[J]. NPG Asia Materials, 2017, 9(9): e433. |
122 | MOGHADAM P Z, IVY J F, ARVAPALLY R K, et al. Adsorption and molecular siting of CO2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation[J]. Chemical Science, 2017, 8(5): 3989-4000. |
123 | LI A, CAO Q, ZHOU G, et al. Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface[J]. Angewandte Chemie International Edition, 2019, 58(41): 14549-14555. |
124 | BÖRJESSON G, SUNDH I, SVENSSON B H, et al. Microbial oxidation of CH4 at different temperatures in landfill cover soils[J]. FEMS Microbiology Ecology, 2004, 48(3): 305-312. |
125 | BÖRJESSON G, SUNDH I, TUNLID A, et al. Microbial oxidation of CH4 at high partial pressures in an organic landfill cover soil under different moisture regimes[J]. FEMS Microbiology Ecology, 1998, 26(3): 207-217. |
126 | WASALATHANTHRI N D, POYRAZ A S, BISWAS S, et al. High-performance catalytic CH4 oxidation at low temperatures: inverse micelle synthesis of amorphous mesoporous manganese oxides and mild transformation to K2-xMn8O16 and ε-MnO2[J]. The Journal of Physical Chemistry C, 2015, 119(3): 1473-1482. |
127 | HE L, FAN Y L, BELLETTRE J, et al. A review on catalytic methane combustion at low temperatures: catalysts, mechanisms, reaction conditions and reactor designs[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109589. |
128 | MURCIA-LÓPEZ S, BACARIZA M C, VILLA K, et al. Controlled photocatalytic oxidation of methane to methanol through surface modification of beta zeolites[J]. ACS Catalysis, 2017, 7(4): 2878-2885. |
129 | ZHENG B, TIAN D, ZHANG L, et al. Investigation of methane adsorption in strained IRMOF-1[J]. The Journal of Physical Chemistry C, 2019, 123(40): 24592-24597. |
130 | 周金平, 喻丽莎. 一种纳米纤维素的疏水改性方法:CN107383212A[P]. 2017-11-24. |
ZHOU Jinping, YU Lisha. Hydrophobic modification method of nanocellulose: CN107383212A[P] . 2017-11-24. | |
131 | LI N, CHEN W, CHEN G, et al. A low-cost, sustainable, and environmentally sound cellulose absorbent with high efficiency for collecting methane bubbles from seawater[J]. ACS Sustainable Chemistry and Engineering, 2018, 6(5): 6370-6377. |
132 | KARTOHARDJONO S, SHABANINDITA S, HARIANJA M, et al. N2O absorption through super hydrophobic hollow fiber membrane contactor[J]. Environmental Progress and Sustainable Energy, 2019, 38(2): 362-366. |
[1] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[5] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[6] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[7] | LIU Yang, WANG Yungang, XIU Haoran, ZOU Li, BAI Yanyuan. Optimal carbonization process of walnut shell based on dynamic analysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 94-103. |
[8] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[9] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[10] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[11] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[12] | ZHANG Chao, YANG Peng, LIU Guanglin, ZHAO Wei, YANG Xufei, ZHANG Wei, YU Bo. Influence of surface microstructure on arrayed microjet flow boiling heat transfer [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4193-4203. |
[13] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[14] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[15] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |