Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6427-6438.DOI: 10.16085/j.issn.1000-6613.2024-164
• Materials science and technology • Previous Articles
ZHENG Xuanjie1(
), TANG Xinde1,2(
), FU Ruixin1, MA Fei1, CHAO Ya’nan1, WANG Xinyan1, WANG Peng2, CHENG Haixia2
Received:2024-10-13
Revised:2024-12-19
Online:2025-12-08
Published:2025-11-25
Contact:
TANG Xinde
郑轩杰1(
), 唐新德1,2(
), 付瑞鑫1, 马菲1, 晁亚楠1, 王鑫砚1, 王鹏2, 程海霞2
通讯作者:
唐新德
作者简介:郑轩杰(2000—),男,硕士研究生,研究方向为道路交通运输新材料。E-mail:1459532958@qq.com。
基金资助:CLC Number:
ZHENG Xuanjie, TANG Xinde, FU Ruixin, MA Fei, CHAO Ya’nan, WANG Xinyan, WANG Peng, CHENG Haixia. Progress on antifouling and antibacterial polymeric coatings[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6427-6438.
郑轩杰, 唐新德, 付瑞鑫, 马菲, 晁亚楠, 王鑫砚, 王鹏, 程海霞. 防污抗菌聚合物涂层的研究与应用进展[J]. 化工进展, 2025, 44(11): 6427-6438.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-164
| 涂层类型 | 材料 | 制备方法 | 性能评价 | 参考文献 |
|---|---|---|---|---|
| 非离子聚合物与抗菌材料 | N-(4-羟基-3-甲氧基苄基)-丙烯酰胺与氟硅基丙烯酸酯 | 自由基聚合 | 具有低表面能、强附着力、对水长期浸泡有良好抵抗力;有效减少细菌和藻类的黏附量 | [ |
| mPEG、3,4-二羟基苯丙氨酸、硝酸银 | 自由基聚合 | 基于季铵盐和银的协同作用,实现高效杀菌和抗微生物黏附,确保其具有长效抗菌功能 | [ | |
| 聚乙二醇、海洋抗菌肽 | Fmoc保护固相肽合成 | 通过PEG修饰海洋抗菌肽,提高其灵活性和亲水性,两者相互作用可有效提高表面的防污抗菌效率 | [ | |
| 甲基丙烯酸十二氟庚酯、聚(聚乙二醇)甲基丙烯酸甲酯、2-(二甲氨基)甲基丙烯酸乙酯 | 可逆加成-断裂链转移聚合 | 结合含氟聚合物和聚乙二醇提升防污性能,对血液成分具有防污作用,对金黄色葡萄球菌和大肠杆菌表现出卓越的抗黏附和抗菌效果,动态环境下持久稳定 | [ | |
| 甲基丙烯酸磺基甜菜碱、聚甲基丙烯酸缩水甘油酯 | 可逆加成-断裂链转移聚合 | 聚合物重复单元数量对防污抗菌性能有影响,聚合度为50时性能最佳 | [ | |
| 含异氰酸酯基的磺丙酸基甜菜碱、含异氰酸酯基的季铵盐 | 羟基与异氰酸酯基团的偶联反应 | 通过PVA纳米纤维与季铵盐的接枝,实现高效杀菌和防污,同时维持低细胞毒性水平 | [ | |
| 离子聚合物与抗菌材料 | 壳聚糖、聚甲基丙烯酸磺基甜菜碱 | 氧化还原聚合 | 利用两性离子发挥抗黏附作用,壳聚糖赋予膜细菌性能,制得纳滤膜对细菌表现出强抗黏附和抗菌性能 | [ |
| 2-甲基丙烯酰氧乙基磷酸胆碱、(甲基丙烯酰氧基)乙基三甲基铵、多巴胺 | 可逆加成-断裂链转移聚合 | 两性离子与季铵盐相互作用,对牛血清蛋白的抑制率为88.8%,可有效降低细菌活力;多巴胺的加入有利于聚合物在基底表面的接枝 | [ | |
| 2-甲基丙烯酰氧乙基磷酸胆碱、4-甲基丙烯酸甲酰苯酯、冰片、氨基丙二腈对甲苯磺酸盐 | 可逆加成-断裂链转移聚合 | 两性离子与冰片协同作用,分别依靠超水合作用和特殊立体化学结构阻止蛋白质吸附、抑制细菌黏附 | [ | |
| 仿生结构表面 | 聚分散橙3 | 光重构技术 | 受鲨鱼皮肤启发,利用光可重构偶氮聚合物制造低阻力鲨鱼皮齿状结构,其表现出优越的疏水性和防污效果 | [ |
| 室温硫化硅橡胶、二甲基十八烷基[3-(三甲氧基硅基)丙基]氯化铵 | 钢模合成 | 受软珊瑚表面启发,制备了石墨烯-有机硅弹性体复合膜,利用表面的触须结构和电负性达到防污抗菌效果 | [ | |
| 三甲氧基(1H,1H,2H,2H-十七氟癸基)硅烷 | 紫外光刻技术、化学沉积技术 | 受荷叶启发,利用细菌排斥作用与物理杀菌之间的协同效应,设计分级结构超疏水表面 | [ |
| 涂层类型 | 材料 | 制备方法 | 性能评价 | 参考文献 |
|---|---|---|---|---|
| 非离子聚合物与抗菌材料 | N-(4-羟基-3-甲氧基苄基)-丙烯酰胺与氟硅基丙烯酸酯 | 自由基聚合 | 具有低表面能、强附着力、对水长期浸泡有良好抵抗力;有效减少细菌和藻类的黏附量 | [ |
| mPEG、3,4-二羟基苯丙氨酸、硝酸银 | 自由基聚合 | 基于季铵盐和银的协同作用,实现高效杀菌和抗微生物黏附,确保其具有长效抗菌功能 | [ | |
| 聚乙二醇、海洋抗菌肽 | Fmoc保护固相肽合成 | 通过PEG修饰海洋抗菌肽,提高其灵活性和亲水性,两者相互作用可有效提高表面的防污抗菌效率 | [ | |
| 甲基丙烯酸十二氟庚酯、聚(聚乙二醇)甲基丙烯酸甲酯、2-(二甲氨基)甲基丙烯酸乙酯 | 可逆加成-断裂链转移聚合 | 结合含氟聚合物和聚乙二醇提升防污性能,对血液成分具有防污作用,对金黄色葡萄球菌和大肠杆菌表现出卓越的抗黏附和抗菌效果,动态环境下持久稳定 | [ | |
| 甲基丙烯酸磺基甜菜碱、聚甲基丙烯酸缩水甘油酯 | 可逆加成-断裂链转移聚合 | 聚合物重复单元数量对防污抗菌性能有影响,聚合度为50时性能最佳 | [ | |
| 含异氰酸酯基的磺丙酸基甜菜碱、含异氰酸酯基的季铵盐 | 羟基与异氰酸酯基团的偶联反应 | 通过PVA纳米纤维与季铵盐的接枝,实现高效杀菌和防污,同时维持低细胞毒性水平 | [ | |
| 离子聚合物与抗菌材料 | 壳聚糖、聚甲基丙烯酸磺基甜菜碱 | 氧化还原聚合 | 利用两性离子发挥抗黏附作用,壳聚糖赋予膜细菌性能,制得纳滤膜对细菌表现出强抗黏附和抗菌性能 | [ |
| 2-甲基丙烯酰氧乙基磷酸胆碱、(甲基丙烯酰氧基)乙基三甲基铵、多巴胺 | 可逆加成-断裂链转移聚合 | 两性离子与季铵盐相互作用,对牛血清蛋白的抑制率为88.8%,可有效降低细菌活力;多巴胺的加入有利于聚合物在基底表面的接枝 | [ | |
| 2-甲基丙烯酰氧乙基磷酸胆碱、4-甲基丙烯酸甲酰苯酯、冰片、氨基丙二腈对甲苯磺酸盐 | 可逆加成-断裂链转移聚合 | 两性离子与冰片协同作用,分别依靠超水合作用和特殊立体化学结构阻止蛋白质吸附、抑制细菌黏附 | [ | |
| 仿生结构表面 | 聚分散橙3 | 光重构技术 | 受鲨鱼皮肤启发,利用光可重构偶氮聚合物制造低阻力鲨鱼皮齿状结构,其表现出优越的疏水性和防污效果 | [ |
| 室温硫化硅橡胶、二甲基十八烷基[3-(三甲氧基硅基)丙基]氯化铵 | 钢模合成 | 受软珊瑚表面启发,制备了石墨烯-有机硅弹性体复合膜,利用表面的触须结构和电负性达到防污抗菌效果 | [ | |
| 三甲氧基(1H,1H,2H,2H-十七氟癸基)硅烷 | 紫外光刻技术、化学沉积技术 | 受荷叶启发,利用细菌排斥作用与物理杀菌之间的协同效应,设计分级结构超疏水表面 | [ |
| [5] | CHEN Weiliang, CORDERO Roselynn, TRAN Hai, et al. 50th anniversary perspective: Polymer brushes: Novel surfaces for future materials[J]. Macromolecules, 2017, 50(11): 4089-4113. |
| [6] | BURMEISTER Nils, ZORN Eilika, PREUSS Lena, et al. Low-fouling and antibacterial polymer brushes via surface-initiated polymerization of a mixed zwitterionic and cationic monomer[J]. Langmuir, 2023, 39(49): 17959-17971. |
| [7] | 马占芳, 隋铭皓, 袁博杰, 等. 季铵盐/纳米银灭活水中细菌效能研究[J]. 哈尔滨工业大学学报, 2019, 51(8): 28-36. |
| MA Zhanfang, SUI Minghao, YUAN Bojie, et al. Inactivation efficacy of quaternized chitosan/silver nanoparticles to bacteria in water[J]. Journal of Harbin Institute of Technology, 2019, 51(8): 28-36. | |
| [8] | CAO Pan, LIU Kewei, LIU Xiaodan, et al. Antibacterial properties of Magainin Ⅱ peptide onto 304 stainless steel surfaces: A comparison study of two dopamine modification methods[J]. Colloids and Surfaces B: Biointerfaces, 2020, 194: 111198. |
| [9] | JUNTER Guy-Alain, Pascal THÉBAULT, LEBRUN Laurent. Polysaccharide-based antibiofilm surfaces[J]. Acta Biomaterialia, 2016, 30: 13-25. |
| [10] | 任国瑜, 妥云, 郑文杰, 等. 超疏水纳米涂层技术研究进展及应用[J]. 化工进展, 2024, 43(8): 4450-4463. |
| REN Guoyu, Yun TUO, ZHENG Wenjie, et al. Research progress and application of superhydrophobic nano-coating technology[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4450-4463. | |
| [11] | LIU Yuhan, HE Xiaoyan, YUAN Chengqing, et al. Antifouling applications and fabrications of biomimetic micro-structured surfaces: A review[J]. Journal of Advanced Research, 2024, 59: 201-221. |
| [12] | Wonhee JO, KANG Hong Suk, CHOI Jaeho, et al. Light-designed shark skin-mimetic surfaces[J]. Nano Letters, 2021, 21(13): 5500-5507. |
| [13] | BING Wei, TIAN Limei, WANG Yangjun, et al. Bio-inspired non-bactericidal coating used for antibiofouling[J]. Advanced Materials Technologies, 2019, 4(2): 1800480. |
| [14] | JIANG Rujian, HAO Lingwan, SONG Lingjie, et al. Lotus-leaf-inspired hierarchical structured surface with non-fouling and mechanical bactericidal performances[J]. Chemical Engineering Journal, 2020, 398: 125609. |
| [15] | Miriam PÉREZ, Mónica GARCÍA, RUIZ Diego, et al. Antifouling activity of green-synthesized 7-hydroxy-4-methylcoumarin[J]. Marine Environmental Research, 2016, 113: 134-140. |
| [16] | LIU Jie, SUN Jiawen, DUAN Jizhou, et al. Capsaicin-modified fluorosilicone based acrylate coating for marine anti-biofouling[J]. Coatings, 2022, 12(7): 988. |
| [17] | MACPHEE Roderick A, KOEPSEL Justin, TAILLY Thomas, et al. Application of novel 3,4-dihydroxyphenylalanine-containing antimicrobial polymers for the prevention of uropathogen attachment to urinary biomaterials[J]. Journal of Endourology, 2019, 33(7): 590-597. |
| [18] | LOU Tong, BAI Xiuqin, HE Xiaoyan, et al. Enhanced antifouling properties of marine antimicrobial peptides by PEGylation[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1124389. |
| [19] | LI Sen, GUO Zhaoyuan, ZHANG Hongxia, et al. ABC triblock copolymers antibacterial materials consisting of fluoropolymer and polyethylene glycol antifouling block and quaternary ammonium salt sterilization block[J]. ACS Applied Bio Materials, 2021, 4(4): 3166-3177. |
| [20] | 马菲, 唐新德, 王鑫砚, 等. 两性离子聚合物涂层的研究与应用进展[J]. 高分子通报, 2024, 37(4): 471-485. |
| MA Fei, TANG Xinde, WANG Xinyan, et al. Progress on zwitterionic polymeric coatings[J]. Chinese Polymer Bulletin, 2024, 37(4): 471-485. | |
| [21] | 闫树鹏, 张冲, 吕华. 两性离子聚合物的研究进展[J]. 功能高分子学报, 2020, 33(1): 1-14. |
| YAN Shupeng, ZHANG Chong, Hua LYU. Advances in zwitterionic polymers[J]. Journal of Functional Polymers, 2020, 33(1): 1-14. | |
| [22] | CHOU Ying-Nien, VENAULT Antoine, CHO Chia-Ho, et al. Epoxylated zwitterionic triblock copolymers grafted onto metallic surfaces for general biofouling mitigation[J]. Langmuir, 2017, 33(38): 9822-9835. |
| [23] | ZHANG Teng, GU Jingwei, LIU Xiangyu, et al. Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine[J]. Materials Science and Engineering: C, 2020, 111: 110855. |
| [24] | ZHAI Xiaofei, CHEN Bingqian, HE Yaoting, et al. A novel loose nanofiltration membrane with superior anti-biofouling performance prepared from zwitterion-grafted chitosan[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132: 104191. |
| [25] | XING Chengmei, MENG Fanning, QUAN Miao, et al. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings[J]. Acta Biomaterialia, 2017, 59: 129-138. |
| [26] | IMBIA Adel S, OUNKAEW Artjima, MAO Xiaohui, et al. Mussel-inspired polymer-based coating technology for antifouling and antibacterial properties[J]. Langmuir, 2024, 40(21): 10957-10965. |
| [27] | SUN Xueli, QIAN Zhiyong, LUO Lingqiong, et al. Antibacterial adhesion of poly(methyl methacrylate) modified by borneol acrylate[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28522-28528. |
| [28] | CHENG Qiuli, ASHA Anika Benozir, LIU Yang, et al. Antifouling and antibacterial polymer-coated surfaces based on the combined effect of zwitterions and the natural borneol[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 9006-9014. |
| [29] | ZHANG Pengchao, LIN Ling, ZANG Dongmian, et al. Designing bioinspired anti-biofouling surfaces based on a superwettability strategy[J]. Small, 2017, 13(4): 1503334. |
| [30] | CHIEN Hsiu-Wen, CHEN Xiangyu, TSAI Wen-Pei, et al. Inhibition of biofilm formation by rough shark skin-patterned surfaces[J]. Colloids and Surfaces B: Biointerfaces, 2020, 186: 110738. |
| [31] | 程秋丽. 新型功能性高分子抗菌涂层材料的设计、制备及其性能研究[D]. 长春: 吉林大学, 2021. |
| CHENG Qiuli. Study on the design, preparation and performance of novel functional polymer antibacterial coating materials[D]. Changchun: Jilin University, 2021. | |
| [32] | REN Tingting, YANG Mingqing, WANG Kaikai, et al. CuO nanoparticles-containing highly transparent and superhydrophobic coatings with extremely low bacterial adhesion and excellent bactericidal property[J]. ACS Applied Materials & Interfaces, 2018, 10(30): 25717-25725. |
| [33] | HUANG Yanping, DAN Nianhua, DAN Weihua, et al. Facile fabrication of gelatin and polycaprolactone based bilayered membranes via spin coating method with antibacterial and cyto-compatible properties[J]. International Journal of Biological Macromolecules, 2019, 124: 699-707. |
| [34] | 张仲达, 杨文芳. 层层自组装技术的研究进展及应用情况[J]. 材料导报, 2017, 31(5): 40-45. |
| ZHANG Zhongda, YANG Wenfang. Research progress and application of layer-by-layer self-assembly technology[J]. Materials Review, 2017, 31(5): 40-45. | |
| [35] | INKPEN Michael S, LIU Zhenfei, LI Haixing, et al. Non-chemisorbed gold-sulfur binding prevails in self-assembled monolayers[J]. Nature Chemistry, 2019, 11(4): 351-358. |
| [36] | HUMBLOT Vincent, YALA Jean-Fabrice, THEBAULT Pascal, et al. The antibacterial activity of Magainin Ⅰ immobilized onto mixed thiols self-assembled monolayers[J]. Biomaterials, 2009, 30(21): 3503-3512. |
| [37] | 陈彦睿, 张星冉, 李方. 基于层层自组装技术的抗污染膜研究进展[J]. 化工进展, 2023, 42(11): 5956-5968. |
| CHEN Yanrui, ZHANG Xingran, LI Fang. Research progress of antifouling membranes based on layer-by-layer self-assembly technique[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5956-5968. | |
| [38] | ZHAO Liman, CHEN Rongrong, LOU Liangjie, et al. Layer-by-layer-assembled antifouling films with surface microtopography inspired by Laminaria japonica[J]. Applied Surface Science, 2020, 511: 145564. |
| [39] | XU Gang, LIU Peng, PRANANTYO Dicky, et al. Antifouling and antimicrobial coatings from zwitterionic and cationic binary polymer brushes assembled via “click” reactions[J]. Industrial & Engineering Chemistry Research, 2017, 56(49): 14479-14488. |
| [40] | PEJMAN Mehdi, FIROUZJAEI Mostafa Dadashi, AKTIJ Sadegh Aghapour, et al. Improved antifouling and antibacterial properties of forward osmosis membranes through surface modification with zwitterions and silver-based metal organic frameworks[J]. Journal of Membrane Science, 2020, 611: 118352. |
| [41] | 熊文娟, 戴思雯, 万晓波, 等. 仿贻贝蛋白聚合物在防污涂层中的应用进展[J]. 高分子材料科学与工程, 2023, 39(4): 182-190. |
| XIONG Wenjuan, DAI Siwen, WAN Xiaobo, et al. Application progress of mussel-inspired polymers in antifouling coatings[J]. Polymer Materials Science & Engineering, 2023, 39(4): 182-190. | |
| [42] | LIU Ziqiang, WU Yunfeng, LAN Fengxia, et al. Improvement of permeability and antifouling performance of PVDF membranes via dopamine-assisted deposition of zwitterionic copolymer[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656: 130505. |
| [43] | ASHA Anika Benozir, OUNKAEW Artjima, PENG Yiyang, et al. Bioinspired antifouling and antibacterial polymer coating with intrinsic self-healing property[J]. Biomaterials Science, 2023, 11(1): 128-139. |
| [44] | OLMOS Dania, Javier GONZÁLEZ-BENITO. Polymeric materials with antibacterial activity: A review[J]. Polymers, 2021, 13(4): 613. |
| [45] | SARVARI Raana, NAGHILI Behrooz, AGBOLAGHI Samira, et al. Organic/polymeric antibiofilm coatings for surface modification of medical devices[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72(11): 867-908. |
| [46] | ZHANG Yidan, ZHANG Xiang, ZHAO Yuqing, et al. Self-adaptive antibacterial surfaces with bacterium-triggered antifouling-bactericidal switching properties[J]. Biomaterials Science, 2020, 8(3): 997-1006. |
| [47] | ZHANG Fanjun, YANG Li, HU Cheng, et al. Phosphorylcholine- and cation-bearing copolymer coating with superior antibiofilm and antithrombotic properties for blood-contacting devices[J]. Journal of Materials Chemistry B, 2020, 8(36): 8433-8443. |
| [48] | JIANG Ting, XIE Zhou, WU Feng, et al. Hyaluronic acid nanoparticle composite films confer favorable time-dependent biofunctions for vascular wound healing[J]. ACS Biomaterials Science & Engineering, 2019, 5(4): 1833-1848. |
| [49] | KIRMANIDOU Yvoni, SIDIRA Margarita, DROSOU Maria-Eleni, et al. New Ti-alloys and surface modifications to improve the mechanical properties and the biological response to orthopedic and dental implants: A review[J]. BioMed Research International, 2016, 2016(1): 2908570. |
| [50] | LIU Yifang, HE Libang, LI Jianshu, et al. Mussel-inspired organic-inorganic implant coating based on a layer-by-layer method for anti-infection and osteogenesis[J]. Industrial & Engineering Chemistry Research, 2022, 61(35): 13040-13051. |
| [51] | CHEN Xionggang, ZHOU Jianhong, QIAN Yu, et al. Antibacterial coatings on orthopedic implants[J]. Materials Today Bio, 2023, 19: 100586. |
| [52] | ZARGHAMI Vahid, GHORBANI Mohammad, BAGHERI Kamran Pooshang, et al. Prevention the formation of biofilm on orthopedic implants by melittin thin layer on chitosan/bioactive glass/vancomycin coatings[J]. Journal of Materials Science Materials in Medicine, 2021, 32(7): 75. |
| [53] | LI Shengyu, CHEN Anqi, CHEN Yanxin, et al. Lotus leaf inspired antiadhesive and antibacterial gauze for enhanced infected dermal wound regeneration[J]. Chemical Engineering Journal, 2020, 402: 126202. |
| [54] | ZHANG Yidan, DEMIR Buket, BERTSCH Gregory, et al. Zwitterion and N-halamine functionalized cotton wound dressing with enhanced antifouling, antibacterial, and hemostatic properties[J]. International Journal of Biological Macromolecules, 2023, 230: 123121. |
| [55] | WANG Xianghong, YUAN Shuaishuai, GUO Yu, et al. Facile fabrication of bactericidal and antifouling switchable chitosan wound dressing through a ‘click’-type interfacial reaction[J]. Colloids and Surfaces B: Biointerfaces, 2015, 136: 7-13. |
| [56] | LIU De, SHU Haobo, ZHOU Jiangwei, et al. Research progress on new environmentally friendly antifouling coatings in marine settings: A review[J]. Biomimetics, 2023, 8(2): 200. |
| [57] | Roberto MORALES-CERRADA, Samantha MOLINA-GUTIERREZ, Patrick LACROIX-DESMAZES, et al. Eugenol, a promising building block for biobased polymers with cutting-edge properties[J]. Biomacromolecules, 2021, 22(9): 3625-3648. |
| [58] | XIE Changhai, GUO Hongshuang, ZHAO Weiqiang, et al. Environmentally friendly marine antifouling coating based on a synergistic strategy[J]. Langmuir, 2020, 36(9): 2396-2402. |
| [59] | SHA Jianang, LIU Xin, CHEN Rongrong, et al. Surface hydrolysis-anchored eugenol self-polishing marine antifouling coating[J]. Journal of Colloid and Interface Science, 2023, 637: 67-75. |
| [60] | MA Zhengfeng, LIU Yizhe, FENG Kai, et al. “Brush-like” amphiphilic polymer for environmental adaptive coating[J]. ACS Applied Materials & Interfaces, 2022, 14(16): 18901-18909. |
| [61] | GUAZZELLI Elisa, OLIVA Matteo, PRETTI Carlo, et al. Polyethylene glycol-b-poly(trialkylsilyl methacrylate-co-methyl methacrylate) hydrolyzable block copolymers for eco-friendly self-polishing marine coatings[J]. Polymers, 2022, 14(21): 4589. |
| [62] | WANG Peng, HE Baoluo, WANG Biwen, et al. Durable self-polishing antifouling coating based on fluorine-containing pyrrolidone amphiphilic copolymer-functionalized nanosilica[J]. Progress in Organic Coatings, 2022, 165: 106706. |
| [63] | CAVALLARO Giuseppe, DANILUSHKINA Anna A, EVTUGYN Vladimir G, et al. Halloysite nanotubes: Controlled access and release by smart gates[J]. Nanomaterials, 2017, 7(8): 199. |
| [64] | Isabel FRANCO-CASTILLO, HIERRO Lara, DE LA FUENTE Jesús M, et al. Perspectives for antimicrobial nanomaterials in cultural heritage conservation[J]. Chem, 2021, 7(3): 629-669. |
| [65] | PRESENTATO Alessandro, ARMETTA Francesco, SPINELLA Alberto, et al. Formulation of mesoporous silica nanoparticles for controlled release of antimicrobials for stone preventive conservation[J]. Frontiers in Chemistry, 2020, 8: 699. |
| [66] | Stéphanie EYSSAUTIER-CHUINE, CALANDRA Ivan, Nathalie VAILLANT-GAVEAU, et al. A new preventive coating for building stones mixing a water repellent and an eco-friendly biocide[J]. Progress in Organic Coatings, 2018, 120: 132-142. |
| [67] | DONG Wenrui, LI Bucheng, WEI Jinfei, et al. Environmentally friendly, durable and transparent anti-fouling coatings applicable onto various substrates[J]. Journal of Colloid and Interface Science, 2021, 591: 429-439. |
| [68] | IELO Ileana, GIACOBELLO Fausta, CASTELLANO Angela, et al. Development of antibacterial and antifouling innovative and eco-sustainable sol-gel based materials: From marine areas protection to healthcare applications[J]. Gels, 2021, 8(1): 26. |
| [1] | CLOUTIER M, MANTOVANI D, ROSEI F. Antibacterial coatings: Challenges, perspectives, and opportunities[J]. Trends in Biotechnology, 2015, 33(11): 637-652. |
| [2] | WANG Tong, CHEN Shougang, FENG Huimeng, et al. Modification strategy of siloxane antifouling coating: Adhesion strength, static antifouling, and self-healing properties[J]. Surface Science and Technology, 2023, 1(1): 28. |
| [3] | BAGLIONI Michele, POGGI Giovanna, CHELAZZI David, et al. Advanced materials in cultural heritage conservation[J]. Molecules, 2021, 26(13): 3967. |
| [4] | WANG Shengyao, FANG Lifeng, CHENG Liang, et al. Improved antifouling properties of membranes by simple introduction of zwitterionic copolymers via electrostatic adsorption[J]. Journal of Membrane Science, 2018, 564: 672-681. |
| [69] | SOLTANNIA Babak, ISLAM Muhammad Amirul, CHO Jae-Young, et al. Thermally stable core-shell star-shaped block copolymers for antifouling enhancement of water purification membranes[J]. Journal of Membrane Science, 2020, 598: 117686. |
| [70] | XIE Yi, CHEN Shengqiu, ZHANG Xiang, et al. Engineering of tannic acid inspired antifouling and antibacterial membranes through co-deposition of zwitterionic polymers and Ag nanoparticles[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11689-11697. |
| [1] | YIN Xiaoyun, ZHU Jin, LIU Chunyan, ZHANG Jintao, XU Yuan, ZHU Yingru, SU Ming, SUN Yue, SUN Jie, YUAN Ying. Energy optimization of CPS sulfur recovery unit based on Plackett-Burman design and response surface methodology [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 124-133. |
| [2] | WANG Zhaolin, ZHANG Zhigang, ZHOU Jing, GAO Chen, PENG Kechen, JIANG Mindi, XI Xi, XU Shengli, LIU Hong. Flow and heat transfer characteristics based on Gyroid triply periodic minimal surface heat exchange components [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4454-4462. |
| [3] | HU Jiazhi, JIANG Xinyu, LI Fan, LI Zhihui. Surface catalytic reaction model of the near-space vehicle reentry DSMC method [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4478-4487. |
| [4] | HUANG Lingjun, ZHU Qingyu, ZHANG Yu, SUN Weiqi, DOU Dongyang, WANG Qili. Simultaneous optimization of hydrogen network with CO₂ hydrogenation to methanol process based on evolutionary response surface method [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4688-4700. |
| [5] | CAO Shuang, LIU He, GUO Jiaju, HU Chunxia, YANG Wolong, WU Xuehong. R245fa flow boiling heat transfer characteristics in enhanced tube with gradient porous coating [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3794-3803. |
| [6] | RONG Liping, LI Zhiguo, WANG Gang, ZHANG Dayong, ZHOU Hongxia, MI Changhong, LI Xin, ZHAO Ying, ZHU Jinhua, LIU Xiaohui, LIU Ye. Advances in adhesives for wet bonding based on the catechol structure [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3950-3964. |
| [7] | WANG Jintao, ZHANG Hongzhen, LIANG Bo. Preparation of dual superlyophobic filter paper and its separation to oil in alkaline salt water [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4006-4012. |
| [8] | MA Jing, MA Yulong, ZHU Li, QIAO Song, SUN Yonggang, JI Wenxin. Activation of silica-aluminium minerals of coal gasification coarse slag by different methods [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4251-4266. |
| [9] | ZHOU Penghui, ZENG Lin, DAI Li, FENG Xiaobo, NI Di. Numerical calculation of multi-objective performance optimization of a centrifugal fan based on response surface methodology and entropy weighting method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3271-3279. |
| [10] | SUN Yan, CHEN Machao, TIAN Na, XIE Xiaoyang, LI Xiaoling, HE Jiaojie, ZHAO Xiaohong. Research on in-situ construction of TFC forward osmosis membrane by β-cyclodextrin and its antifouling performance [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3671-3682. |
| [11] | ZHANG Yang, ZHANG Yijie, ZHANG Hongzhi, QIAN Maolin, XIANG Jing. Influence of methyl red on the behavior of electrodeposited copper and its application in through-hole filling [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1542-1549. |
| [12] | BAI Zhongliang, LI Ping, WANG Hui, LI Wei, ZHANG Qiang, LI Ning. Proportioning design and anti-aging performance of asphalt rejuvenator based on response surface methodology [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1607-1618. |
| [13] | BAO Yan, LU Jinhong, GAO Lu, GUO Ruyue, LIU Chao. Research progress on superamphiphobic surfaces and their reentrant structures [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1406-1416. |
| [14] | LI Jie, WANG Yuke, SHI Wentian, GUO Yunjie, LU Yanning, FU Shuo, LU Yiyi. Research progress in constructing superhydrophobic surfaces by laser processing [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1432-1444. |
| [15] | BAI Yiran, ZHAI Yuling, DAI Jinghui, LI Zhouhang. Mechanisms of bubble nucleation and heat transfer enhancement in micro/nano-scale pooling boiling [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 743-751. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |