Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (3): 1432-1444.DOI: 10.16085/j.issn.1000-6613.2024-0429
• Materials science and technology • Previous Articles Next Articles
LI Jie(
), WANG Yuke, SHI Wentian(
), GUO Yunjie, LU Yanning, FU Shuo, LU Yiyi
Received:2024-03-14
Revised:2024-04-10
Online:2025-04-16
Published:2025-03-25
Contact:
SHI Wentian
李杰(
), 王宇科, 石文天(
), 郭云杰, 陆彦宁, 付硕, 路祎祎
通讯作者:
石文天
作者简介:李杰(1984—),男,博士,副教授,研究方向为表面工程。E-mail:lijie0739@btbu.edu.cn。
基金资助:CLC Number:
LI Jie, WANG Yuke, SHI Wentian, GUO Yunjie, LU Yanning, FU Shuo, LU Yiyi. Research progress in constructing superhydrophobic surfaces by laser processing[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1432-1444.
李杰, 王宇科, 石文天, 郭云杰, 陆彦宁, 付硕, 路祎祎. 激光构建超疏水表面的研究进展[J]. 化工进展, 2025, 44(3): 1432-1444.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0429
| 激光刻蚀类型 | 表面结构特点 | 形成过程 | 表面疏水特点 |
|---|---|---|---|
| 点 | 凹坑阵列 | 激光以单个点逐行扫描 | 各向同性 |
| 线 | 凹槽阵列 | 激光以线条逐行扫描 | 各向异性 |
| 网格 | 横纵凹槽阵列 | 激光以线条在横纵方向逐行扫描 | 各向同性 |
| 激光诱导周期性表面(LIPSS) | 多尺度周期性条纹结构 | 激光束与表面等离子体之间的干涉 | 多尺度周期结构增强疏水性 |
| 激光刻蚀类型 | 表面结构特点 | 形成过程 | 表面疏水特点 |
|---|---|---|---|
| 点 | 凹坑阵列 | 激光以单个点逐行扫描 | 各向同性 |
| 线 | 凹槽阵列 | 激光以线条逐行扫描 | 各向异性 |
| 网格 | 横纵凹槽阵列 | 激光以线条在横纵方向逐行扫描 | 各向同性 |
| 激光诱导周期性表面(LIPSS) | 多尺度周期性条纹结构 | 激光束与表面等离子体之间的干涉 | 多尺度周期结构增强疏水性 |
| 材料 | 激光 波长/nm | 频率 /kHz | 脉冲 时间/s | 扫描速度 /mm·s-1 | 功率 /W | 水接触角 /(°) | 参考 文献 |
|---|---|---|---|---|---|---|---|
| PTFE | 1064 | 20 | — | — | 3 | 165.34 | [ |
| PDMS | 248 | 10 | 2.5×10-8 | 0.05 | — | 156 | [ |
| 橡胶 | 800 | 1 | 1×10-13 | 2 | — | 153.6 | [ |
| 铜 | 335 | 30 | 2×10-8 | 200 | — | 161 | [ |
| 材料 | 激光 波长/nm | 频率 /kHz | 脉冲 时间/s | 扫描速度 /mm·s-1 | 功率 /W | 水接触角 /(°) | 参考 文献 |
|---|---|---|---|---|---|---|---|
| PTFE | 1064 | 20 | — | — | 3 | 165.34 | [ |
| PDMS | 248 | 10 | 2.5×10-8 | 0.05 | — | 156 | [ |
| 橡胶 | 800 | 1 | 1×10-13 | 2 | — | 153.6 | [ |
| 铜 | 335 | 30 | 2×10-8 | 200 | — | 161 | [ |
| 材料 | 激光波长/nm | 频率/kHz | 脉冲时间/s | 扫描速度/mm·s–1 | 功率/W | 化学试剂 | 水接触角/(°) | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| 铜 | 1064 | 20 | 5×10-8 | 500 | 16 | 1H, 1H, 2H, 2H-全氟癸基三氯硅烷 | 156.4 | [ |
| 65Mn | — | 20 | 2×10-8~10×10-8 | 200~400 | 30 | 硬脂酸 | 154.19 | [ |
| 氧化锆 | 1030 | 50 | 2.62×10-13 | 10~50 | — | 硬脂酸 | 163.9 | [ |
| 镍 | 1040 | 100 | 3.88×10-13 | 80 | 1.6 | 氟硅烷 | 156.8 | [ |
| 不锈钢 | 1064 | 50~200 | 1×10-7 | 20~50 | 1~20 | 硬脂酸 | 153.9 | [ |
| 铝 | 1060 | 20 | 5×10-8 | 100 | 10 | 1H, 1H, 2H, 2H-全氟癸基三乙氧基硅烷 | 155.8 | [ |
| 材料 | 激光波长/nm | 频率/kHz | 脉冲时间/s | 扫描速度/mm·s–1 | 功率/W | 化学试剂 | 水接触角/(°) | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| 铜 | 1064 | 20 | 5×10-8 | 500 | 16 | 1H, 1H, 2H, 2H-全氟癸基三氯硅烷 | 156.4 | [ |
| 65Mn | — | 20 | 2×10-8~10×10-8 | 200~400 | 30 | 硬脂酸 | 154.19 | [ |
| 氧化锆 | 1030 | 50 | 2.62×10-13 | 10~50 | — | 硬脂酸 | 163.9 | [ |
| 镍 | 1040 | 100 | 3.88×10-13 | 80 | 1.6 | 氟硅烷 | 156.8 | [ |
| 不锈钢 | 1064 | 50~200 | 1×10-7 | 20~50 | 1~20 | 硬脂酸 | 153.9 | [ |
| 铝 | 1060 | 20 | 5×10-8 | 100 | 10 | 1H, 1H, 2H, 2H-全氟癸基三乙氧基硅烷 | 155.8 | [ |
| 材料 | 激光波长 /nm | 频率 /kHz | 脉冲时间/s | 扫描速度 /mm·s–1 | 功率/W | 化学试剂 | 后处理或其他技术 | 水接触角 /(°) | 参考文献 |
|---|---|---|---|---|---|---|---|---|---|
| 铝 | 532 | 10~200 | — | 100、700、1300 | 8 | — | 热处理 | 153 | [ |
| 铜 | 800 | 1 | 3.5×10-14 | 0.8 | — | — | 高温热氧化,乙醇辅助退火 | 150.7 | [ |
| 不锈钢 | 355 | 50 | 1×10-8 | 100 | 4.2 | — | 低温退火 | 167 | [ |
| 形状记忆 聚合物 | 1064 | — | 1×10-11、1.2×10-11、1.4×10-11 | 0.45、0.5、0.55 | — | 1H, 1H, 2H, 2H- 全氟癸基三氯硅烷 | 模板复制 | 154 | [ |
| 材料 | 激光波长 /nm | 频率 /kHz | 脉冲时间/s | 扫描速度 /mm·s–1 | 功率/W | 化学试剂 | 后处理或其他技术 | 水接触角 /(°) | 参考文献 |
|---|---|---|---|---|---|---|---|---|---|
| 铝 | 532 | 10~200 | — | 100、700、1300 | 8 | — | 热处理 | 153 | [ |
| 铜 | 800 | 1 | 3.5×10-14 | 0.8 | — | — | 高温热氧化,乙醇辅助退火 | 150.7 | [ |
| 不锈钢 | 355 | 50 | 1×10-8 | 100 | 4.2 | — | 低温退火 | 167 | [ |
| 形状记忆 聚合物 | 1064 | — | 1×10-11、1.2×10-11、1.4×10-11 | 0.45、0.5、0.55 | — | 1H, 1H, 2H, 2H- 全氟癸基三氯硅烷 | 模板复制 | 154 | [ |
| 1 | FENG Lin, ZHANG Yanan, XI Jinming, et al. Petal effect: A superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24(8): 4114-4119. |
| 2 | BIXLER Gregory D, THEISS Andrew, BHUSHAN Bharat, et al. Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings[J]. Journal of Colloid and Interface Science, 2014, 419: 114-133. |
| 3 | KOCH Kerstin, BHUSHAN Bharat, BARTHLOTT Wilhelm. Multifunctional surface structures of plants: An inspiration for biomimetics[J]. Progress in Materials Science, 2009, 54(2): 137-178. |
| 4 | LI Wen, ZHAN Yanlong, YU Sirong. Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives[J]. Progress in Organic Coatings, 2021, 152: 106117. |
| 5 | YUAN Gan, LIU Yu, Chi-Vinh NGO, et al. Rapid fabrication of anti-corrosion and self-healing superhydrophobic aluminum surfaces through environmentally friendly femtosecond laser processing[J]. Optics Express, 2020, 28(24): 35636-35650. |
| 6 | MAO Zhenwei, CAO Wei, HU Jie, et al. A dual-functional surface with hierarchical micro/nanostructure arrays for self-cleaning and antireflection[J]. RSC Advances, 2017, 7(78): 49649-49654. |
| 7 | 赵欣, 黄成超, 李梦,等. 激光结构化超疏水表面的应用与研究现状[J]. 激光与光电子学进展, 2022, 59(19): 82-92. |
| ZHAO Xin, HUANG Chengchao, LI Meng, et al. Application and research status of laser structured superhydrophobic surfaces[J]. Laser & Optoelectronics Progress, 2022, 59(19): 82-92. | |
| 8 | 张嘉亮, 成扬, 杨青,等. 飞秒激光制备耐久型超疏水表面及其应用的研究进展[J]. 光子学报, 2022, 51(7): 0751414. |
| ZHANG Jialiang, CHENG Yang, YANG Qing, et al. Research progress of femtosecond laser preparation of durable superhydrophobic surface and its application[J]. Acta Photonica Sinica, 2022, 51(7): 0751414. | |
| 9 | 杨焕, 曹宇, 李峰平,等. 激光制备超疏水表面研究进展[J]. 光电工程, 2017, 44(12): 1160-1168. |
| YANG Huan, CAO Yu, LI Fengping, et al. Research progress in superhydrophobic surfaces fabricated by laser[J]. Opto-Electronic Engineering, 2017, 44(12): 1160-1168. | |
| 10 | 雍佳乐, 杨青, 陈烽,等. 飞秒激光仿生制备极端浸润性表面[J]. 科学通报, 2019, 64(12): 1211-1237. |
| YONG Jiale, YANG Qing, CHEN Feng, et al. Femtosecond laser-induced superwetting surfaces[J]. Chinese Science Bulletin, 2019, 64(12): 1211-1237. | |
| 11 | 白雪, 陈烽. 飞秒激光制备超疏水表面的研究进展[J]. 光学学报, 2021, 41(1): 218-231. |
| BAI Xue, CHEN Feng. Recent advances in femtosecond laser-induced superhydrophobic surfaces[J]. Acta Optica Sinica, 2021, 41(1): 218-231. | |
| 12 | YOUNG Thomas. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London Series Ⅰ, 1805, 95: 65-87. |
| 13 | WENZEL Robert N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
| 14 | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
| 15 | KIETZIG Anne-Marie, NEGAR MIRVAKILI Mehr, KAMAL Saeid, et al. Laser-patterned super-hydrophobic pure metallic substrates: Cassie to Wenzel wetting transitions[J]. Journal of Adhesion Science and Technology, 2011, 25(20): 2789-2809. |
| 16 | 曹祥康, 孙晓光, 蔡光义,等. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537. |
| CAO Xiangkang, SUN Xiaoguang, CAI Guangyi, et al. Durable superhydrophobic surfaces: Theoretical models, preparation strategies, and evaluation methods[J]. Progress in Chemistry, 2021, 33(9): 1525-1537. | |
| 17 | BONN Daniel, EGGERS Jens, INDEKEU Joseph, et al. Wetting and spreading[J]. Reviews of Modern Physics, 2009, 81(2): 739-805. |
| 18 | FEOKTISTOV Dmitry V, ORLOVA Evgeniya G, ISLAMOVA Anastasia G. Mechanism of contact line movement of a droplet spreading over a solid surface[J]. MATEC Web of Conferences, 2017, 91: 01026. |
| 19 | PANG Khang Ee, NÁRAIGH Lennon Ó. A mathematical model and mesh-free numerical method for contact-line motion in lubrication theory[J]. Environmental Fluid Mechanics, 2022, 22(2/3): 301-336. |
| 20 | WANG Ben, ZHANG Yabin, SHI Lei, et al. Advances in the theory of superhydrophobic surfaces[J]. Journal of Materials Chemistry, 2012, 22(38): 20112-20127. |
| 21 | WANG Xiao, FU Cheng, ZHANG Chunlai, et al. A comprehensive review of wetting transition mechanism on the surfaces of microstructures from theory and testing methods[J]. Materials, 2022, 15(14): 4747. |
| 22 | SHIBUICHI S, YAMAMOTO T, ONDA T, et al. Super water- and oil-repellent surfaces resulting from fractal structure[J]. Journal of Colloid and Interface Science, 1998, 208(1): 287-294. |
| 23 | 陈列, 文关棋, 郭飞,等. 纳秒激光诱导超疏水硅橡胶表面微结构的分形特性[J]. 中国激光, 2021, 48(6): 0602201. |
| CHEN Lie, WEN Guanqi, GUO Fei, et al. Fractal characteristics of microstructures on a superhydrophobic silicone rubber surface induced by a nanosecond laser[J]. Chinese Journal of Lasers, 2021, 48(6): 0602201. | |
| 24 | 巴一, 韩善果, 杨永强,等. 激光刻蚀法制备超疏水材料表面的研究进展[J]. 热加工工艺, 2023, 52(4): 1-5, 11. |
| BA Yi, HAN Shanguo, YANG Yongqiang, et al. Research progress on preparation of superhydrophobic materials by laser etching[J]. Hot Working Technology, 2023, 52(4): 1-5, 11. | |
| 25 | 曹嘉冀, 修思羽, 许金凯,等. 飞秒激光制备仿生功能微纳结构及其应用[J]. 中国激光, 2022, 49(10): 1002702. |
| CAO Jiaji, XIU Siyu, XU Jinkai, et al. Fabrication of bioinspired functional micro-nano structures by femtosecond laser and their applications[J]. Chinese Journal of Lasers, 2022, 49(10): 1002702. | |
| 26 | GUO Chunfang, ZHANG Meiju, HU Jun. Fabrication of hierarchical structures on titanium alloy surfaces by nanosecond laser for wettability modification[J]. Optics & Laser Technology, 2022, 148: 107728. |
| 27 | YONG Jiale, YANG Qing, HUO Jinglan, et al. Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100μm) for bubble/gas manipulation[J]. International Journal of Extreme Manufacturing, 2022, 4(1): 015002. |
| 28 | SARBADA Shashank, SHIN Yung C. Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser[J]. Applied Surface Science, 2017, 405: 465-475. |
| 29 | TRAN Ngoc Giang, CHUN Doo-Man. Green manufacturing of extreme wettability contrast surfaces with superhydrophilic and superhydrophobic patterns on aluminum[J]. Journal of Materials Processing Technology, 2021, 297: 117245. |
| 30 | 孙晓雨, 孙树峰, 王津,等. 超疏水表面激光加工技术研究进展[J]. 中国表面工程, 2022, 35(1): 53-71. |
| SUN Xiaoyu, SUN Shufeng, WANG Jin, et al. Research progress of laser processing technology for superhydrophobic surface[J]. China Surface Engineering, 2022, 35(1): 53-71. | |
| 31 | 占彦龙, 李文, 李宏,等. 激光微加工技术制备浸润性可控聚四氟乙烯超疏水表面[J]. 高分子材料科学与工程, 2018, 34(4): 147-151, 158. |
| ZHAN Yanlong, LI Wen, LI Hong, et al. Fabrication of polytetrafluoroethylene superhydrophobic surface with controllable wettability by laser micromaching technology[J]. Polymer Materials Science & Engineering, 2018, 34(4): 147-151, 158. | |
| 32 | 陈峒霖, 毛江维, 陈招弟,等. 激光加工制备仿芦苇叶结构的超疏水表面[J]. 科学通报, 2019, 64(12): 1303-1308. |
| CHEN Donglin, MAO Jiangwei, CHEN Zhaodi, et al. Fabrication of bionic reed leaf superhydrophobic surface by laser processing[J]. Chinese Science Bulletin 2019, 64(12): 1303-1308. | |
| 33 | FARSHCHIAN Bahador, GATABI Javad R, BERNICK Steven M, et al. Laser-induced superhydrophobic grid patterns on PDMS for droplet arrays formation[J]. Applied Surface Science, 2017, 396: 359-365. |
| 34 | 陈列, 聂琦璐, 郭飞,等. 飞秒激光刻蚀硅橡胶超疏水表面老化特征的研究[J]. 中国激光, 2022, 49(10): 1002606. |
| CHEN Lie, NIE Qilu, GUO Fei, et al. Aging characteristics of superhydrophobic silicone rubber surfaces etched by femtosecond laser[J]. Chinese Journal of Lasers, 2022, 49(10): 1002606. | |
| 35 | YANG Huan, XU Kaichen, XU Changwen, et al. Femtosecond laser fabricated elastomeric superhydrophobic surface with stretching-enhanced water repellency[J]. Nanoscale Research Letters, 2019, 14(1): 333. |
| 36 | NASSER Jalal, LIN Jiajun, ZHANG Lisha, et al. Laser induced graphene printing of spatially controlled super-hydrophobic/hydrophilic surfaces[J]. Carbon, 2020, 162: 570-578. |
| 37 | TANG M. Laser ablation of metal substrates for super-hydrophobic effect[J]. Journal of Laser Micro, 2011, 6(1): 6-9. |
| 38 | 李杰, 刘玉德, 高东明,等. 激光加工结合自组装制备铝合金超疏水表面[J]. 中国材料进展, 2015, 34(6): 462-466. |
| LI Jie, LIU Yude, GAO Dongming, et al. Preparation of superhydrophobic surface on aluminum alloy based on laser manufacturing and self-assembled method[J]. Materials China, 2015, 34(6): 462-466. | |
| 39 | LI Haoyang, TIAN Yanling, YANG Zhen. Stability mechanism of laser-induced fluorinated super-hydrophobic coating in alkaline solution[J]. Journal of Bionic Engineering, 2022, 19(1): 113-125. |
| 40 | FENG Libang, ZHANG Hongxia, WANG Zilong, et al. Superhydrophobic aluminum alloy surface: Fabrication, structure, and corrosion resistance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441: 319-325. |
| 41 | JIN Qing, TIAN Guangyuan, LI Jinxin, et al. The study on corrosion resistance of superhydrophobic magnesium hydroxide coating on AZ31B magnesium alloy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577: 8-16. |
| 42 | ZHANG Fen, CHEN Shougang, DONG Lihua, et al. Preparation of superhydrophobic films on titanium as effective corrosion barriers[J]. Applied Surface Science, 2011, 257(7): 2587-2591. |
| 43 | ZHOU Xue, YU Sirong, ZANG Jie, et al. Colorful nanostructured TiO2 film with superhydrophobic-superhydrophilic switchable wettability and anti-fouling property[J]. Journal of Alloys and Compounds, 2019, 798: 257-266. |
| 44 | 刘祁文, 刘国东, 李子航,等. 纳秒激光制备镁合金超疏水表面及其性能研究[J]. 激光与光电子学进展, 2022, 59(5): 224-231. |
| LIU Qiwen, LIU Guodong, LI Zihang, et al. Preparation and properties of superhydrophobic surface of magnesium alloy by nanosecond laser[J]. Laser & Optoelectronics Progress, 2022, 59(5): 224-231. | |
| 45 | 乔屹涛, 张东光, 张智泓. 激光加工对65Mn超疏水表面分形结构机械稳定性的影响[J]. 太原理工大学学报, 2022, 53(5): 846-853. |
| QIAO Yitao, ZHANG Dongguang, ZHANG Zhihong. Effect of laser texturing on mechanical stability of fractal structure on 65Mn superhydrophobic surface[J]. Journal of Taiyuan University of Technology, 2022, 53(5): 846-853. | |
| 46 | 任乃飞, 宋佳佳, 李保家,等. 飞秒激光刻蚀氧化锆表面微纳结构及其润湿与抗菌性能[J]. 表面技术, 2022, 51(9): 359-370. |
| REN Naifei, SONG Jiajia, LI Baojia, et al. Micro-nano structures, wettability and antibacterial property on zirconia surfaces by femtosecond laser etching[J]. Surface Technology, 2022, 51(9): 359-370. | |
| 47 | 林立峰, 何秀权, 章桥新,等. 飞秒激光制备超疏水镍基合金及性能研究[J]. 应用激光, 2022, 42(10): 93-98. |
| LIN Lifeng, HE Xiuquan, ZHANG Qiaoxin, et al. Femtosecond laser preparation and properties of superhydrophobic nickel-based alloy[J]. Applied Laser, 2022, 42(10): 93-98. | |
| 48 | TANG Yiping, CAI Yukui, WANG Lei, et al. Formation mechanism of superhydrophobicity of stainless steel by laser-assisted decomposition of stearic acid and its corrosion resistance[J]. Optics and Laser Technology, 2022, 153: 108190. |
| 49 | YANG Zhen, LIU Xianping, TIAN Yanling. Novel metal-organic super-hydrophobic surface fabricated by nanosecond laser irradiation in solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 587: 124343. |
| 50 | ZHAO Menglei, GUO Jian, ZHAO Jingnan, et al. Heat treatment temperature effect on wettability of laser-machined aluminum surface[J]. Journal of Materials Engineering and Performance, 2022, 31(1): 733-741. |
| 51 | 兰铃, 底月兰, 王海斗,等. 激光复合加工制备超疏水金属表面的研究进展[J]. 表面技术, 2021, 50(12): 246-256. |
| LAN Ling, DI Yuelan, WANG Haidou, et al. Research progress on preparation of super-hydrophobic metal surface by laser composite processing[J]. Surface Technology, 2021, 50(12): 246-256. | |
| 52 | 郑志霞, 李文芳, 张丹,等. 激光刻蚀紫铜表面润湿性的快速转变[J]. 激光与光电子学进展, 2022, 59(7): 0714010. |
| ZHENG Zhixia, LI Wenfang, ZHANG Dan, et al. Rapid transformation of wettability on surface of laser etched red copper[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0714010. | |
| 53 | ZHAO Yizhe, HONG Minghui. Stainless steel anisotropic superhydrophobic surfaces fabrication with inclined cone array via laser ablation and post annealing treatment[J]. Journal of Central South University, 2022, 29(10): 3261-3269. |
| 54 | 王青华, 程杨洋, 王慧鑫. 锆基非晶合金激光微织构处理及摩擦磨损性能[J]. 东北大学学报(自然科学版), 2022, 43(11): 1575-1582. |
| WANG Qinghua, CHENG Yangyang, WANG Huixin. Laser surface micro-texturing of Zr-based bulk metallic glass and investigation of tribological and wear performance[J]. Journal of Northeastern University(Natural Science), 2022, 43(11): 1575-1582. | |
| 55 | KWON Min Ho, SHIN Hong Shik, CHU Chong Nam. Fabrication of a super-hydrophobic surface on metal using laser ablation and electrodeposition[J]. Applied Surface Science, 2014, 288: 222-228. |
| 56 | SHAO Yanlong, ZHAO Jie, FAN Yong, et al. Shape memory superhydrophobic surface with switchable transition between “Lotus Effect” to “Rose Petal Effect”[J]. Chemical Engineering Journal, 2020, 382: 122989. |
| 57 | 李晶, 丛居平, 郭楠,等. 超疏水低黏附自清洁类蝶鳞片仿生结构的激光构筑与力学机理[J]. 中国激光, 2022, 49(16): 1602009. |
| LI Jing, CONG Juping, GUO Nan, et al. Superhydrophobic low adhesion self-cleaning biomimetic surfaces: Laser construction and mechanical properties of simulated butterfly scales[J]. Chinese Journal of Lasers, 2022, 49(16): 1602009. | |
| 58 | 沈宗宝, 李闯, 李品,等. 激光冲击压印制备具有良好时效性的疏水铜表面[J]. 激光与光电子学进展, 2022, 59(17): 1714006. |
| SHEN Zongbao, LI Chuang, LI Pin, et al. Preparation of a hydrophobic copper surface with excellent aging properties using laser shock imprinting[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1714006. | |
| 59 | MA Qiang, TONG Zhe, WANG Wei, et al. Fabricating robust and repairable superhydrophobic surface on carbon steel by nanosecond laser texturing for corrosion protection[J]. Applied Surface Science, 2018, 455: 748-757. |
| 60 | 赵美云, 杨帆, 张小龙,等. 基于光刻法的复合织构硅橡胶表面的抗冰性能[J]. 中国激光, 2022, 49(10): 1002603. |
| ZHAO Meiyun, YANG Fan, ZHANG Xiaolong, et al. Anti-icing performance of complex texture silicone rubber surface based on laser engraving[J]. Chinese Journal of Lasers, 2022, 49(10): 1002603. | |
| 61 | CHEN Lie, PING Heng, YANG Tao, et al. Icing performance of superhydrophobic silicone rubber surfaces by laser texturing[J]. Materials Research Express, 2019, 6(12): 1250e2. |
| 62 | 于庆华, 于世胜, 王帅,等. 纳秒激光制备超疏水TC4钛合金表面的抗结霜性能[J]. 机械工程材料, 2022, 46(6): 84-90, 97. |
| YU Qinghua, YU Shisheng, WANG Shuai, et al. Frost resistance of superhydrophobic TC4 titanium alloy surface by nanosecond laser[J]. Materials for Mechanical Engineering, 2022, 46(6): 84-90, 97. | |
| 63 | 梅宏昆, 王宬轩, 杨广峰. 微秒激光制备超疏水表面及抑霜性能实验研究[J]. 激光与红外, 2022, 52(10): 1468-1473. |
| MEI Hongkun, WANG Chengxuan, YANG Guangfeng. Experimental study on superhydrophobic surface fabrication by microsecond laser and frost suppression performance[J]. Laser & Infrared, 2022, 52(10): 1468-1473. | |
| 64 | WANG Peng, ZHAO Hui, ZHENG Boyuan, et al. A super-robust armoured superhydrophobic surface with excellent anti-icing ability[J]. Journal of Bionic Engineering, 2023, 20(5): 1891-1904. |
| 65 | CHEN Changhao, TIAN Ze, LUO Xiao, et al. Cauliflower-like micro-nano structured superhydrophobic surfaces for durable anti-icing and photothermal de-icing[J]. Chemical Engineering Journal, 2022, 450: 137936. |
| 66 | PAN Rui, ZHANG Hongjun, ZHONG Minlin. Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1743-1753. |
| 67 | HONG Zhihao, WANG Wenjun, MA Zelin, et al. Anti-icing ceramics surface induced by femtosecond laser[J]. Ceramics International, 2022, 48(7): 10236-10243. |
| 68 | ZHAN Y L, RUAN M, LI W, et al. Fabrication of anisotropic PTFE superhydrophobic surfaces using laser microprocessing and their self-cleaning and anti-icing behavior[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 535: 8-15. |
| 69 | SU Yahui, CHEN Liang, JIAO Yunlong, et al. Hierarchical hydrophilic/hydrophobic/bumpy Janus membrane fabricated by femtosecond laser ablation for highly efficient fog harvesting[J]. ACS Applied Materials & Interfaces, 2021, 13(22): 26542-26550. |
| 70 | LI Weizhen, CHU Dongkai, QU Shuoshuo, et al. Bioinspired superwetting surfaces for fog harvesting fabricated by picosecond laser direct ablation[J]. Journal of Central South University, 2022, 29(10): 3368-3375. |
| 71 | ZHANG Jingzhou, ZHANG Yuanchen, YONG Jiale, et al. Femtosecond laser direct weaving bioinspired superhydrophobic/hydrophilic micro-pattern for fog harvesting[J]. Optics & Laser Technology, 2022, 146: 107593. |
| 72 | HOU Kongyang, LI Xiaoyang, LI Qiang, et al. Tunable wetting patterns on superhydrophilic/superhydrophobic hybrid surfaces for enhanced dew-harvesting efficacy[J]. Advanced Materials Interfaces, 2020, 7(2): 1901683. |
| 73 | LI Jing, ZHOU Yingluo, CONG Juping, et al. Bioinspired integrative surface with hierarchical texture and wettable gradient-driven water collection[J]. Langmuir, 2020, 36(48): 14737-14747. |
| 74 | YIN Kai, DU Haifeng, DONG Xinran, et al. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection[J]. Nanoscale, 2017, 9(38): 14620-14626. |
| 75 | WANG Meng, LIU Qian, ZHANG Haoran, et al. Laser direct writing of tree-shaped hierarchical cones on a superhydrophobic film for high-efficiency water collection[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 29248-29254. |
| 76 | YUAN Gan, LIU Yu, XIE Fei, et al. Fabrication of superhydrophobic gully-structured surfaces by femtosecond laser and imprinting for high-efficiency self-cleaning rain collection[J]. Langmuir, 2022, 38(8): 2720-2728. |
| 77 | MERTANIEMI Henrikki, JOKINEN Ville, SAINIEMI Lauri, et al. Superhydrophobic tracks for low-friction, guided transport of water droplets[J]. Advanced Materials, 2011, 23(26): 2911-2914. |
| 78 | WU Huaping, ZHU Kai, CAO Binbin, et al. Smart design of wettability-patterned gradients on substrate-independent coated surfaces to control unidirectional spreading of droplets[J]. Soft Matter, 2017, 13(16): 2995-3002. |
| 79 | YU Yunru, SHANG Luoran, GUO Jiahui, et al. Design of capillary microfluidics for spinning cell-laden microfibers[J]. Nature Protocols, 2018, 13(11): 2557-2579. |
| 80 | LI Yifan, FISCHER Robert, ZBORAY Robert, et al. Laser-engraved textiles for engineering capillary flow and application in microfluidics[J]. ACS Applied Materials & Interfaces, 2020, 12(26): 29908-29916. |
| 81 | CHEN Lie, XU Yifan, BENNETT Peter, et al. Capillary performance of vertically grooved wicks on laser-processed aluminum surfaces with different wettability[J]. Journal of Physics D: Applied Physics, 2023, 56(42): 425501. |
| 82 | CHANG Bo, FENG Yuhang, JIN Jialong, et al. Low-cost laser micromachining super hydrophilic-super hydrophobic microgrooves for robotic capillary micromanipulation of microfibers[J]. Micromachines, 2021, 12(8): 854. |
| 83 | SONG Yuegan, HU Yanlei, ZHANG Yachao, et al. Flexible tri-switchable wettability surface for versatile droplet manipulations[J]. ACS Applied Materials & Interfaces, 2022, 14(32): 37248-37256. |
| 84 | 成健, 曹佳丽, 张恒超,等. 基于超快激光的浸润性可控表面无泵运输轨迹制备[J]. 中国激光, 2019, 46(11): 1102012. |
| CHENG Jian, CAO Jiali, ZHANG Hengchao, et al. Preparation of pump-free transport trajectory on infiltration controllable surface using ultrafast laser[J]. Chinese Journal of Lasers, 2019, 46(11): 1102012. | |
| 85 | HOU Huimin, WU Xiaomin, HU Zhifeng, et al. High-speed directional transport of condensate droplets on superhydrophobic saw-tooth surfaces[J]. Journal of Colloid and Interface Science, 2023, 649: 290-301. |
| 86 | LIU Yu, YUAN Gan, GUO Chunlei, et al. Femtosecond laser fabrication and chemical coating of anti-corrosion ethylene-glycol repellent aluminum surfaces[J]. Materials Letters, 2022, 323: 132562. |
| 87 | FENG Guang, LI Fengping, XUE Wei, et al. Laser textured GFRP superhydrophobic surface as an underwater acoustic absorption metasurface[J]. Applied Surface Science, 2019, 463: 741-746. |
| 88 | 杨成娟, 杨雪, 王蒙,等. 仿生超疏水表面在微夹持器钳口端面的应用研究[J]. 中国激光, 2022, 49(10): 225-238. |
| YANG Chengjuan, YANG Xue, WANG Meng, et al. Application of bionic superhydrophobic surface in jaw end face of microgripper[J]. Chinese Journal of Lasers, 2022, 49(10): 225-238. | |
| 89 | 何婉盈, 姚鹏, 褚东凯,等. 钛表面微凹凸织构的激光加工及其细胞黏附研究[J]. 中国激光, 2022, 49(10): 258-272. |
| HE Wanying, YAO Peng, CHU Dongkai, et al. Fabrication and cell-adhesion evaluation of laser-ablated microprotrusion or microgroove on titanium[J]. Chinese Journal of Lasers, 2022, 49(10): 258-272. |
| [1] | LIU Tengqing, ZHANG Yaokang, WANG Shuangfeng. Research progress of enhanced heat transfer performance of ultrathin vapor chamber [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6592-6607. |
| [2] |
XIE Ying,WU Hongwu.
Influence of surface treatment on properties of vegetable fibre reinforced polymer composite [J]. Chemical Industry and Engineering Progree, 2010, 29(7): 1256-. |
| [3] | HU Peixian,WEN Yuefang,YANG Yonggang,LIU Lang. Effect of surface treatment on soakage of epoxy resin to carbon fibers [J]. Chemical Industry and Engineering Progree, 2009, 28(2): 288-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |