Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (3): 1406-1416.DOI: 10.16085/j.issn.1000-6613.2024-0362
• Materials science and technology • Previous Articles Next Articles
BAO Yan(
), LU Jinhong, GAO Lu, GUO Ruyue, LIU Chao
Received:2024-03-04
Revised:2024-04-30
Online:2025-04-16
Published:2025-03-25
Contact:
BAO Yan
通讯作者:
鲍艳
作者简介:鲍艳(1981—),女,教授,博士生导师,研究方向为有机/无机复合材料。E-mail:baoyan@sust.edu.cn。
基金资助:CLC Number:
BAO Yan, LU Jinhong, GAO Lu, GUO Ruyue, LIU Chao. Research progress on superamphiphobic surfaces and their reentrant structures[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1406-1416.
鲍艳, 鲁劲宏, 高璐, 郭茹月, 刘超. 超双疏表面及其重入结构的研究进展[J]. 化工进展, 2025, 44(3): 1406-1416.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0362
| 类型 | 原理 | 制备途径 | 优势 | 局限性 | 特定用途 |
|---|---|---|---|---|---|
| 液下超双疏 | 水中超疏油、油中超疏水。在水中需要较高的表面能,能够亲水;在油中需要较低的表面能,能够亲油 | 通过外界刺激改变表面化学性质或构筑特殊微/纳粗糙结构 | 可通过预润湿来按需进行油水分离,实现多相有机液体分离,无需外部能量 | 刺激响应性聚合物结构在润湿性转变过程中容易被破坏,实际应用中成本较高 | 油水分离,相转移催化,燃料净,微流体装置 |
| 空气超疏水/水下超疏油 | 暴露在空气和水界面,在空气中需要较低的表面能,在水下需要较高的表面能 | 调节粗糙结构 | 通过在不同介质中疏液效果的不同来达到高效的油水分离 | 寿命周期短 | 油水分离 |
| 空气超双疏 | 在空气界面既具有超疏水性又具有超疏油性 | 在微纳结构中引入氟硅烷或仿生构建重入结构 | 其出色的超疏液性能,在防污防结冰方面相对于超疏水表面提升明显 | 含氟类物质使用较多,环境污染较为严重,制备工艺较复杂 | 输油管道防污,防结冰 |
| 类型 | 原理 | 制备途径 | 优势 | 局限性 | 特定用途 |
|---|---|---|---|---|---|
| 液下超双疏 | 水中超疏油、油中超疏水。在水中需要较高的表面能,能够亲水;在油中需要较低的表面能,能够亲油 | 通过外界刺激改变表面化学性质或构筑特殊微/纳粗糙结构 | 可通过预润湿来按需进行油水分离,实现多相有机液体分离,无需外部能量 | 刺激响应性聚合物结构在润湿性转变过程中容易被破坏,实际应用中成本较高 | 油水分离,相转移催化,燃料净,微流体装置 |
| 空气超疏水/水下超疏油 | 暴露在空气和水界面,在空气中需要较低的表面能,在水下需要较高的表面能 | 调节粗糙结构 | 通过在不同介质中疏液效果的不同来达到高效的油水分离 | 寿命周期短 | 油水分离 |
| 空气超双疏 | 在空气界面既具有超疏水性又具有超疏油性 | 在微纳结构中引入氟硅烷或仿生构建重入结构 | 其出色的超疏液性能,在防污防结冰方面相对于超疏水表面提升明显 | 含氟类物质使用较多,环境污染较为严重,制备工艺较复杂 | 输油管道防污,防结冰 |
方法 制备 | 重入结构 | 优点 | 缺点 | 超双疏性 | 油 | 结构稳定性 | 参考 文献 | |
|---|---|---|---|---|---|---|---|---|
| WCA | OCA | |||||||
| 3D激光写入 | 锥形柱蘑菇形 | 分辨率高,易于制造,具有精确的几何形状 | 要求材料具有敏感性,存在高分辨率与大尺寸之间的矛盾 | >150° | >150° | 花生油 | 稳定性较好 | [ |
| 掩膜光刻 | T形双重蘑菇形 | 形状易于控制,结构制备成本低 | 存在形貌与尺寸之间的矛盾 | >150° | >150° | 十六烷 | T形,双重稳定性较差,蘑菇形稳定性较好 | [ |
| 压印光刻 | 倒梯形 | 分辨率高,结构制备成本低,产量高 | 重入形状有限,难以制造分层重入 | >150° | ≈135° | 甲醇 | 稳定性较好 | [ |
| 胶体光刻 | T形蘑菇形 | 结构制备成本低,产量高 | 重入形状有限 | >150° | >150° | 十六烷 | T形稳定性较差,蘑菇形稳定性较好 | [ |
| 反应刻蚀 | 双重 | 结构制备成本低 | 操作复杂,重入形状有限 | >150° | >150° | 十六烷 | 稳定性较差 | [ |
| 微流体 | 倒梯形 | 结构制备成本低,可扩展生产 | 制备材料有限,重入形状有限 | >150° | ≈94.8° | 十六烷 | 稳定性较好 | [ |
| 软模板 | T形倒梯形 | 形貌和几何形状易于控制,结构制备成本低 | 依赖模板,材料有限 | >150° | >150° | 十二烷 | T形稳定性较差,倒梯形稳定性较好 | [ |
方法 制备 | 重入结构 | 优点 | 缺点 | 超双疏性 | 油 | 结构稳定性 | 参考 文献 | |
|---|---|---|---|---|---|---|---|---|
| WCA | OCA | |||||||
| 3D激光写入 | 锥形柱蘑菇形 | 分辨率高,易于制造,具有精确的几何形状 | 要求材料具有敏感性,存在高分辨率与大尺寸之间的矛盾 | >150° | >150° | 花生油 | 稳定性较好 | [ |
| 掩膜光刻 | T形双重蘑菇形 | 形状易于控制,结构制备成本低 | 存在形貌与尺寸之间的矛盾 | >150° | >150° | 十六烷 | T形,双重稳定性较差,蘑菇形稳定性较好 | [ |
| 压印光刻 | 倒梯形 | 分辨率高,结构制备成本低,产量高 | 重入形状有限,难以制造分层重入 | >150° | ≈135° | 甲醇 | 稳定性较好 | [ |
| 胶体光刻 | T形蘑菇形 | 结构制备成本低,产量高 | 重入形状有限 | >150° | >150° | 十六烷 | T形稳定性较差,蘑菇形稳定性较好 | [ |
| 反应刻蚀 | 双重 | 结构制备成本低 | 操作复杂,重入形状有限 | >150° | >150° | 十六烷 | 稳定性较差 | [ |
| 微流体 | 倒梯形 | 结构制备成本低,可扩展生产 | 制备材料有限,重入形状有限 | >150° | ≈94.8° | 十六烷 | 稳定性较好 | [ |
| 软模板 | T形倒梯形 | 形貌和几何形状易于控制,结构制备成本低 | 依赖模板,材料有限 | >150° | >150° | 十二烷 | T形稳定性较差,倒梯形稳定性较好 | [ |
| 1 | BARTHLOTT Wilhelm, NEINHUIS Christoph. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. |
| 2 | TSUJII Kaoru, YAMAMOTO Takamasa, ONDA Tomohiro, et al. Super oil-repellent surfaces[J]. Angewandte Chemie International Edition, 1997, 36(9): 1011-1012. |
| 3 | LI Huanjun, WANG Xianbao, SONG Yanlin, et al. Super-“amphiphobic” aligned carbon nanotube films[J]. Angewandte Chemie International Edition, 2001, 40(9): 1743-1746. |
| 4 | GAO Xuefeng, JIANG Lei. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36. |
| 5 | ZHUANG Kai, YANG Xiaolong, HUANG Wei, et al. Efficient bubble transport on bioinspired topological ultraslippery surfaces[J]. ACS Applied Materials & Interfaces, 2021, 13(51): 61780-61788. |
| 6 | WENG Wei, TENJIMBAYASHI Mizuki, HU Wei Hsun, et al. Evolution of and disparity among biomimetic superhydrophobic surfaces with gecko, petal, and lotus effect[J]. Small, 2022, 18(18): 2270092. |
| 7 | Adham AL-AKHALI, NIE Kaixun, FANG Duoxun, et al. Fabrication of metal-based superhydrophilic and underwater superoleophobic surfaces by laser ablation and magnetron sputtering[J]. Applied Surface Science, 2023, 621: 156829. |
| 8 | ZHOU Maolin, ZHANG Lei, ZHONG Lieshuang, et al. Robust photothermal icephobic surface with mechanical durability of multi-bioinspired structures[J]. Advanced Materials, 2024, 36(3): 2305322. |
| 9 | GUO Molan, NIE Chao, ZHANG Pengyu, et al. A superamphiphobic surface with ordered hexagonal microstructures inspired by springtails[J]. New Journal of Chemistry, 2024, 48(7): 2884-2887. |
| 10 | WENZEL Robert N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
| 11 | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
| 12 | CASSIE A B D. Contact angles[J]. Discussions of the Faraday Society, 1948, 3: 11. |
| 13 | ZHANG Kaiqiang, XU Feng, GAO Yanfeng. Superhydrophobic and oleophobic dual-function coating with durablity and self-healing property based on a waterborne solution[J]. Applied Materials Today, 2021, 22: 100970. |
| 14 | WANG Xiaowei, JIA Li, DANG Chao. The wetting transition of low surface tension droplet on the special-shaped microstructure surface[J]. Colloid and Interface Science Communications, 2022, 50: 100649. |
| 15 | XU Changlian, WANG Yuzhong. Novel dual superlyophobic materials in water-oil systems: Under oil magneto-fluid transportation and oil-water separation[J]. Journal of Materials Chemistry A, 2018, 6(7): 2935-2941. |
| 16 | NUZZO Ralph G, DUBOIS Lawrence H, ALLARA David L. Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers[J]. Journal of the American Chemical Society, 1990, 112(2): 558-569. |
| 17 | ZHAO Zhihong, NING Yuzhen, JIN Xu, et al. Molecular-structure-induced under-liquid dual superlyophobic surfaces[J]. ACS Nano, 2020, 14(11): 14869-14877. |
| 18 | WANG Kai, HE Huaqiang, WEI Baibing, et al. Multifunctional switchable nanocoated membranes for efficient integrated purification of oil/water emulsions[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 54315-54323. |
| 19 | ZHU Xiaotao, GAO Zhongshuai, LI Fangchao, et al. Superlyophobic graphene oxide/polydopamine coating under liquid system for liquid/liquid separation, dye removal, and anti-corrosion[J]. Carbon, 2022, 190: 329-336. |
| 20 | KANG Yutang, JIAO Shihui, WANG Boran, et al. PVDF-modified TiO2 nanowires membrane with underliquid dual superlyophobic property for switchable separation of oil-water emulsions[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40925-40936. |
| 21 | WANG Wenwen, KANG Yutang, CUI Canyu, et al. Fabrication of underliquid dual superlyophobic membrane via anchoring polyethersulfone nanoparticles on Zn-Ni-Co layered double hydroxide (LDH) nanowires with stainless steel mesh as supporter[J]. Separation and Purification Technology, 2022, 294: 121148. |
| 22 | FENG Lin, LI Shuhong, LI Yingshunet al. Super-hydrophobic surfaces: From natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860. |
| 23 | LIU Mingjie, WANG Shutao, WEI Zhixiang, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Advanced Materials, 2009, 21(6): 665-669. |
| 24 | WAN Xizi, JIA Lanxin, LIU Xi, et al. WET-induced layered organohydrogel as bioinspired “Sticky-Slippy skin” for robust underwater oil-repellency[J]. Advanced Materials, 2022, 34(16): 2110408. |
| 25 | Lu TIE, LI Jing, LIU Mingming, et al. Dual superlyophobic surfaces with superhydrophobicity and underwater superoleophobicity[J]. Journal of Materials Chemistry A, 2018, 6(25): 11682-11687. |
| 26 | SONG Yingbin, LAI Hua, JIAO Xiaoyu, et al. Amphibious superlyophobic shape memory arrays with tunable wettability in both air and water[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 788-797. |
| 27 | SAHOO Bichitra N, GUNDA Naga Siva Kumar, NANDA Sonil, et al. Development of dual-phobic surfaces: Superamphiphobicity in air and oleophobicity underwater[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6716-6726. |
| 28 | 梁雷, 王彦玲, 张杉. 超双疏含氟聚合物的研究进展[J]. 化工进展, 2020, 39(3): 1070-1079. |
| LIANG Lei, WANG Yanling, ZHANG Shan. Research progress of super-amphiphobic fluoropolymers[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1070-1079. | |
| 29 | ZHANG Binbin, YAN Jiayang, LI Xuewu, et al. Self-cleaning and corrosion-resistant superamphiphobic coating with super-repellency towards low-surface-tension liquids[J]. Journal of Materials Research and Technology, 2023, 23: 1094-1104. |
| 30 | ZHENG Yanjie, WANG Keli, SUN Lei, et al. Preparation of PFDTS-Kaolin/PU superamphiphobic coatings with antibacterial, antifouling and improved durability property[J]. Progress in Organic Coatings, 2022, 173: 107145. |
| 31 | 程宏, 韦智元, 王涌, 等. Ni-nSiO2纳米复合电镀制备钢基超双疏表面探究[J]. 材料保护, 2023, 56(1): 58-63. |
| CHENG Hong, WEI Zhiyuan, WANG Yong, et al. Investigation of the preparation of steel-based superamphiphobic surface by Ni-nSiO2 nanocomposite electroplating[J]. Materials Protection, 2023, 56(1): 58-63. | |
| 32 | 李亚斌. 环境友好水性超疏水、超双疏涂层的制备及性能研究[D]. 兰州: 兰州理工大学, 2019. |
| LI Yabin. Preparation and properties of environmentally friedly waterborne superhydrophobic and superamphiphobic coatings[D]. Lanzhou: Lanzhou University of Technology, 2019. | |
| 33 | KANG Seong Min, CHOI Ji Seong, AN Joon Hyung. Reliable and robust fabrication rules for springtail-inspired superomniphobic surfaces[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 21120-21126. |
| 34 | ZHAO Xiaoxiao, PARK Daniel S, CHOI Junseo, et al. Flexible-templated imprinting for fluorine-free, omniphobic plastics with re-entrant structures[J]. Journal of Colloid and Interface Science, 2021, 585: 668-675. |
| 35 | SUN Jing, ZHU Pingan, YAN Xiantong, et al. Robust liquid repellency by stepwise wetting resistance[J]. Applied Physics Reviews, 2021, 8(3): 031403. |
| 36 | LIU Yang, LU Jinzhong, XUE Wei, et al. A strategy for fabricating multi-level micro-nano superamphiphobic surfaces by laser-electrochemistry subtractive-additive hybrid manufacturing method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663: 130946. |
| 37 | TUTEJA Anish, CHOI Wonjae, MA Minglin, et al. Designing superoleophobic surfaces[J]. Science, 2007, 318(5856): 1618-1622. |
| 38 | TUTEJA Anish, CHOI Wonjae, MABRY Joseph M, et al. Robust omniphobic surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47): 18200-18205. |
| 39 | LIU Xiaojiang, GU Hongcheng, WANG Min, et al. 3D printing of bioinspired liquid superrepellent structures[J]. Advanced Materials, 2018, 30(22): 1800103. |
| 40 | LIU Tingyi “Leo”, KIM Chang-Jin “CJ”. Turning a surface superrepellent even to completely wetting liquids[J]. Science, 2014, 346(6213): 1096-1100. |
| 41 | LIU Wendong, XIANG Siyuan, LIU Xueyao, et al. Underwater superoleophobic surface based on silica hierarchical cylinder arrays with a low aspect ratio[J]. ACS Nano, 2020, 14(7): 9166-9175. |
| 42 | TAN You SIN, WANG Hao, WANG Hongtao, et al. High-throughput fabrication of large-scale metasurfaces using electron-beam lithography with SU-8 gratings for multilevel security printing[J]. Photonics Research, 2023, 11(3): B103. |
| 43 | YANG Bowen, YU Mingming, YU Haifeng. Azopolymer-based nanoimprint lithography: Recent developments in methodology and applications[J]. ChemPlusChem, 2020, 85(9): 2166-2176. |
| 44 | CHOI Hojung, KIM Joohoon, KIM Wonjoong, et al. Realization of high aspect ratio metalenses by facile nanoimprint lithography using water-soluble stamps[J]. PhotoniX, 2023, 4(1): 18. |
| 45 | GHAFFARI S, ALIOFKHAZRAEI M, BARATI DARBAND Gh, et al. Review of superoleophobic surfaces: Evaluation, fabrication methods, and industrial applications[J]. Surfaces and Interfaces, 2019, 17: 100340. |
| 46 | WANG Hujun, ZHANG Zhihui, WANG Zuankai, et al. Improved dynamic stability of superomniphobic surfaces and droplet transport on slippery surfaces by dual-scale re-entrant structures[J]. Chemical Engineering Journal, 2020, 394: 124871. |
| 47 | YANG Yi, ZHANG Yachao, LI Guoqiang, et al. Directional rebound of compound droplets on asymmetric self-grown tilted mushroom-like micropillars for anti-bacterial and anti-icing applications[J]. Chemical Engineering Journal, 2023, 472: 144949. |
| 48 | QI Xinyu, GAO Zhuwei, LI Chengxin, et al. Underwater superoleophobic copper mesh coated with block nano protrusion hierarchical structure for efficient oil/water separation[J]. Journal of Industrial and Engineering Chemistry, 2023, 119: 450-460. |
| 49 | WU Mingming, SHI Guogui, LIU Weimin, et al. A universal strategy for the preparation of dual superlyophobic surfaces in oil-water systems[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14759-14767. |
| 50 | DARBAND Ghasem Barati, ALIOFKHAZRAEI Mahmood, HYUN Suyeon, et al. Pulse electrodeposition of a superhydrophilic and binder-free Ni-Fe-P nanostructure as highly active and durable electrocatalyst for both hydrogen and oxygen evolution reactions[J]. ACS Applied Materials & Interfaces, 2020, 12(48): 53719-53730. |
| 51 | ALTANGEREL Zolboo, Badamgarav PUREV-OCHIR, GANZORIG Anand, et al. Superhydrophobic modification and characterization of Cashmere fiber surfaces by wet coating techniques of silica nanoparticles[J]. Surfaces and Interfaces, 2020, 19: 100533. |
| 52 | GIANG Ha N, NGUYEN Truyen X, HUYNH Tien V, et al. Fabrication of superhydrophobic surface using one-step chemical treatment[J]. Surfaces and Interfaces, 2020, 21: 100673. |
| 53 | DUFOUR Renaud, PERRY Guillaume, HARNOIS Maxime, et al. From micro to nano reentrant structures: Hysteresis on superomniphobic surfaces[J]. Colloid and Polymer Science, 2013, 291(2): 409-415. |
| 54 | HENSEL René, FINN Andreas, HELBIG Ralf, et al. Biologically inspired omniphobic surfaces by reverse imprint lithography[J]. Advanced Materials, 2014, 26(13): 2029-2033. |
| 55 | WANG Shuijing, LI Hongdou, XIA Rong, et al. Scalable nanofabrication of T-shape nanopillars based on polystyrene/polyphenylsilsequioxane films showing broadband antireflection and super-omniphobicity[J]. ACS Applied Nano Materials, 2022, 5(3): 3973-3982. |
| 56 | LIAO Dong, HE Minghao, QIU Huihe. High-performance icephobic droplet rebound surface with nanoscale doubly reentrant structure[J]. International Journal of Heat and Mass Transfer, 2019, 133: 341-351. |
| 57 | ZHANG Zhonggang, PEI Guangyao, ZHAO Keli, et al. Fresnel diffraction strategy enables the fabrication of flexible superomniphobic surfaces[J]. Langmuir, 2022, 38(47): 14508-14516. |
| 58 | KANG Seong Min, AN Joon Hyung. Robust and transparent lossless directional omniphobic ultra-thin sticker-type film with re-entrant micro-stripe arrays[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 39646-39653. |
| 59 | DONG Shilian, ZHANG Xiaolei, LI Qian, et al. Springtail-inspired superamphiphobic ordered nanohoodoo arrays with quasi-doubly reentrant structures[J]. Small, 2020, 16(19): 2000779. |
| 60 | SONG Jinlong, PAN Weihao, WANG Kang, et al. Fabrication of micro-reentrant structures by liquid/gas interface shape-regulated electrochemical deposition[J]. International Journal of Machine Tools and Manufacture, 2020, 159: 103637. |
| 61 | KANG Seong Min, KIM Hyunjung, CHOI Ji Seong, et al. Bioinspired omniphobic microchamber structure[J]. Advanced Materials Interfaces, 2021, 8(12): 2100027. |
| 62 | KIM Do Hyeog, KIM Seok, PARK Seo Rim, et al. Shape-deformed mushroom-like reentrant structures for robust liquid-repellent surfaces[J]. ACS Applied Materials & Interfaces, 2021, 13(28): 33618-33626. |
| 63 | KIM Hyunjung, KIM Hong Nam, KANG Seong Min. Robust fabrication of double-ring mushroom structure for reliable omniphobic surfaces[J]. Surfaces and Interfaces, 2022, 29: 101778. |
| 64 | ZHU Ping’an, KONG Tiantian, ZHOU Chunmei, et al. Engineering microstructure with evaporation-induced self-assembly of microdroplets[J]. Small Methods, 2018, 2(6): 1800017. |
| 65 | ZHU Ping’an, KONG Tiantian, TANG Xin, et al. Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating[J]. Nature Communications, 2017, 8: 15823. |
| 66 | LI Haojun, JIN Qingqing, LI Haibo, et al. Transparent superamphiphobic material formed by hierarchical nano re-entrant structure[J]. Advanced Functional Materials, 2024, 34(3): 2309684. |
| 67 | Maesoon IM, Hown IM, LEE Joo-Hyung, et al. A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate[J]. Soft Matter, 2010, 6(7): 1401-1404. |
| 68 | LEE Sanghee, KIM Wuseok, Changyong YIM, et al. Growth of hierarchical gold clusters for use in superomniphobic electrodes[J]. RSC Advances, 2019, 9(2): 761-765. |
| 69 | WONG William S Y, LIU Guanyu, NASIRI Noushin, et al. Omnidirectional self-assembly of transparent superoleophobic nanotextures[J]. ACS Nano, 2017, 11(1): 587-596. |
| 70 | KANG Seong Min, CHOI Ji Seong. Selective liquid sliding surfaces with springtail-inspired concave mushroom-like micropillar arrays[J]. Small, 2020, 16(3): 1904612. |
| [1] | ZHANG Yang, ZHANG Yijie, ZHANG Hongzhi, QIAN Maolin, XIANG Jing. Influence of methyl red on the behavior of electrodeposited copper and its application in through-hole filling [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1542-1549. |
| [2] | BAI Zhongliang, LI Ping, WANG Hui, LI Wei, ZHANG Qiang, LI Ning. Proportioning design and anti-aging performance of asphalt rejuvenator based on response surface methodology [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1607-1618. |
| [3] | JIN Yuyang, NIU Chuanfeng, LIU Yingshuo, DING Shi. Graphite powder/Nafion-Pb electrode for electrocatalytic reduction of oxalic acid to glycolic acid [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1003-1013. |
| [4] | YIN Liaofei, YANG Zhonglin, ZHANG Kexin, ZHANG Zhiqiang, DANG Chao. Subcooled flow boiling heat transfer of low surface tension coolant SF-33 in open microchannels [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 764-772. |
| [5] | BAI Yiran, ZHAI Yuling, DAI Jinghui, LI Zhouhang. Mechanisms of bubble nucleation and heat transfer enhancement in micro/nano-scale pooling boiling [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 743-751. |
| [6] | JIANG Liping, ZHANG Xueqiao, ZHONG Xiaojuan, WEI Yufan, XIAO Li, GUO Xujing, YANG Yijin. Optimization of acid leaching process of iron from vanadium slag and preparation of composite photocatalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 538-548. |
| [7] | XIE Yulin, RAU Jui-yeh, HUANG Jian, HAO Jiayi, WANG Youyi, HUANG Qi. Preparation of continuous ZIF-8 membrane and its progress in hydrogen separation [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 403-418. |
| [8] | LI Ying, WANG Qizhao, BAI Bo, ZHANG Qian, SUN Wenjing, ZHANG Linxuan. Unidirectional water transportation and fog collection performance of Janus surface-patterned structures [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5133-5141. |
| [9] | WU Yuqi, LI Jiangtao, DING Jianzhi, SONG Xiulan, SU Bingqin. Calcined Mg/Al hydrotalcites for CO2 removal in anaerobic digestion biogas: Performances and mechanisms [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5250-5261. |
| [10] | SUN Yan, XIE Xiaoyang, FENG Qianying, ZHENG Lu, HE Jiaojie, YANG Liwei, BAI Bo. Preparation of forward osmosis membrane modified by tannic acid-iron (Ⅲ) and its antifouling performance [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5309-5319. |
| [11] | SONG Jiakai, KONG Lingzhen, CHEN Jiaqing, SUN Huan, LI Qi, LI Changhe, WANG Sicheng, KONG Biao. Liquid film flow and separation characteristics in the swirl separation section of a tubular deliquidiser [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4297-4306. |
| [12] | WANG Jia, LI Wencui, WU Fan, GAO Xinqian, LU Anhui. Regulation active components distribution of NiMo/Al2O3 catalysts for hydrodesulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4393-4402. |
| [13] | LI li, CAI Xinyu, CHEN Yinjie, ZHANG Wenqi, LI Guanghui, RAO Pinhua. Preparation and properties of superhydrophobic-highly oleophobic SiC membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4516-4522. |
| [14] | LI Binde, WANG Bixia, YUAN Wenlong, DANG Xiao’e, MA Hongzhou. Preparation of battery-grade iron phosphate using the by-product ferrous sulfate of titanium dioxide [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4523-4533. |
| [15] | LI Wenzhe, SHEN Miao, WANG Jianqiang. Research progress in the preparation of new two-dimensional layered metal carbon/nitrides by molten salt method [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3660-3671. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |