1 |
李雪, 王艳君, 王玉超, 等. 仿生表面用于雾水收集的最新研究进展[J]. 化工进展, 2023, 42(5): 2486-2503.
|
|
LI Xue, WANG Yanjun, WANG Yuchao, et al. Recent advances in bionic surfaces for fog collection[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2486-2503.
|
2 |
LIU Xiaoyi, BEYSENS Daniel, BOUROUINA Tarik. Water harvesting from air: Current passive approaches and outlook[J]. ACS Materials Letters, 2022, 4(5): 1003-1024.
|
3 |
PARKER Andrew R, LAWRENCE Chris R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34.
|
4 |
HOU Youmin, YU Miao, CHEN Xuemei, et al. Recurrent filmwise and dropwise condensation on a beetle mimetic surface[J]. ACS Nano, 2015, 9(1): 71-81.
|
5 |
IMRAN Jamil Muhammad, CAI Yuhang, WAQAR Ahmed, et al. Bioinspired slippery asymmetric bumps of candle soot coating for condensation and directional transport of water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658: 130574.
|
6 |
张成龙, 激光制备超疏水-超亲水仿生结构表面及集水特性研究[D]. 温州: 温州大学, 2021.
|
|
ZHANG Chenglong. Study on surface and water collection characteristics of superhydrophobic and superhydrophilic biomimetic structures prepared by laser [D]. Wenzhou: Wenzhou University, 2021.
|
7 |
张兴振, 靳健, 朱玉长. 非对称浸润性Janus膜的制备及应用进展[J]. 膜科学与技术, 2023, 43(3): 148-157.
|
|
ZHANG Xingzhen, JIN Jian, ZHU Yuzhang, Preparation and application of Janus membranes with asymmetric wettability[J]. Membrane Science and Technology, 2023, 43(3): 148-157.
|
8 |
YANG Haocheng, HOU Jingwei, CHEN Vicki, et al. Janus membranes: Exploring duality for advanced separation[J]. Angewandte Chemie (International Ed in English), 2016, 55(43): 13398-13407.
|
9 |
CAO Moyuan, XIAO Jiasheng, YU Cunming, et al. Hydrophobic/hydrophilic cooperative Janus system for enhancement of fog collection[J]. Small, 2015, 11(34): 4379-4384.
|
10 |
FU Ye, WU Linshan, AI Shulun, et al. Bionic collection system for fog-dew harvesting inspired from desert beetle[J]. Nano Today, 2023, 52: 101979.
|
11 |
张郗. 单宁酸参与的聚合物分离膜表界面工程研究[D]. 杭州: 浙江大学, 2019.
|
|
ZHANG Xi. Applications of tannic acid in surface and interface engineering for polymer membranes[D]. Hangzhou: Zhejiang University, 2019.
|
12 |
EJIMA Hirotaka, RICHARDSON Joseph J, LIANG Kang, et al. One-step assembly of coordination complexes for versatile film and particle engineering[J]. Science, 2013, 341(6142): 154-157.
|
13 |
HUANG Yuxiang, LIN Qiuqin, YU Yanglun, et al. Functionalization of wood fibers based on immobilization of tannic acid and in situ complexation of Fe (Ⅱ) ions[J]. Applied Surface Science, 2020, 510: 145436.
|
14 |
REN Longfei, ZHANG Siqi, MA Zhongbao, et al. Antibiotics separation from saline wastewater by nanofiltration membrane based on tannic acid-ferric ions coordination complexes[J]. Desalination, 2022, 541: 116034.
|
15 |
WANG Ben, ZHANG Yabin, LIANG Weixin, et al. A simple route to transform normal hydrophilic cloth into a superhydrophobic-superhydrophilic hybrid surface[J]. Journal of Materials Chemistry A, 2014, 2(21): 7845-7852.
|
16 |
阮玉婷, 杨芸宇, 王亚博, 等. 多巴胺改性超疏水棉织物的制备及应用[J]. 印染, 2020, 46(4): 11-16.
|
|
RUAN Yuting, YANG Yunyu, WANG Yabo, et al. Preparation of super-hydrophobic cotton fabrics based on poly-dopamine and its application[J]. China Dyeing & Finishing, 2020, 46(4): 11-16.
|
17 |
ZHOU Cailong, CHEN Zhaodan, YANG Hao, et al. Nature-inspired strategy toward superhydrophobic fabrics for versatile oil/water separation[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 9184-9194.
|
18 |
XIAO Yirong, GUO Dongxue, LI Tong, et al. Facile fabrication of superhydrophilic nanofiltration membranes via tannic acid and irons layer-by-layer self-assembly for dye separation[J]. Applied Surface Science, 2020, 515: 146063.
|
19 |
STAFIE N, STAMATIALIS D F, WESSLING M. Effect of PDMS cross-linking degree on the permeation performance of PAN/PDMS composite nanofiltration membranes[J]. Separation and Purification Technology, 2005, 45(3): 220-231.
|
20 |
熊路, 石磊, 王闻宇, 等. 基于润湿性梯度设计的单向导水/油多孔材料研究进展[J]. 化工进展, 2022, 41(5): 2526-2536.
|
|
XIONG Lu, SHI Lei, WANG Wenyu, et al. Progress in unidirectional water/oil transport porous materials based on design of wettability gradient[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2526-2536.
|
21 |
BROCHARD F. Motions of droplets on solid surfaces induced by chemical or thermal gradients[J]. Langmuir, 1989, 5(2): 432-438.
|
22 |
TIAN Xuelin, LI Juan, WANG Xian. Anisotropic liquid penetration arising from a cross-sectional wettability gradient[J]. Soft Matter, 2012, 8(9): 2633-2637.
|
23 |
REN Feifei, LI Guoqiang, ZHANG Zhen, et al. A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection[J]. Journal of Materials Chemistry A, 2017, 5(35): 18403-18408.
|
24 |
LI Deke, FAN Yufeng, HAN Guocai, et al. Multibioinspired Janus membranes with superwettable performance for unidirectional transportation and fog collection[J]. Chemical Engineering Journal, 2021, 404: 126515.
|
25 |
WU Junda, YAN Zhuo, YAN Yongsheng, et al. Beetle-inspired dual-directional Janus pumps with interfacial asymmetric wettability for enhancing fog harvesting[J]. ACS Applied Materials & Interfaces, 2022, 14(43): 49338-49351.
|
26 |
DING Yong, TU Kunkun, BURGERT Ingo, et al. Janus wood membranes for autonomous water transport and fog collection[J]. Journal of Materials Chemistry A, 2020, 8(42): 22001-22008.
|
27 |
张卫勇. 干旱区黄土混掺植物保水方法及其特性的试验研究[D]. 兰州: 兰州理工大学, 2010.
|
|
ZHANG Weiyong. Experiment research on moist-locking methods and its characteristics of loess soil in arid land[D]. Lanzhou: Lanzhou University of Technology, 2010.
|