Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (9): 5351-5362.DOI: 10.16085/j.issn.1000-6613.2024-1130
• Resources and environmental engineering • Previous Articles
WANG Wenjun1(
), LIU Ruixin1, WANG Jun1, ZHANG Qinglei2, HOU Li’an3(
)
Received:2024-07-15
Revised:2024-10-25
Online:2025-09-30
Published:2025-09-25
Contact:
WANG Wenjun, HOU Li’an
王文君1(
), 刘瑞鑫1, 王军1, 张庆磊2, 侯立安3(
)
通讯作者:
王文君,侯立安
作者简介:王文君(1988—),女,讲师,研究方向为室内VOCs净化。E-mail:wangwenjunsunny@163.com。
基金资助:CLC Number:
WANG Wenjun, LIU Ruixin, WANG Jun, ZHANG Qinglei, HOU Li’an. Research progress of visible light degradation of indoor VOCs by titanium dioxide materials[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5351-5362.
王文君, 刘瑞鑫, 王军, 张庆磊, 侯立安. 浅析二氧化钛材料可见光降解室内VOCs的研究进展[J]. 化工进展, 2025, 44(9): 5351-5362.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1130
| 化合物 | 物质来源 |
|---|---|
| 甲醛 | 农药、涂料、压制木材、泡沫 |
| 乙醛 | 胶水、地板材料、皮革霉菌 |
| 对二氯苯 | 房间除臭剂、天花板材料 |
| 二氯甲烷 | 除漆剂、溶剂 |
| 苯乙烯 | 绝缘纺织品、消毒剂、塑料、油漆 |
| 丙烯醛 | 化石燃料燃烧、烟草烟雾 |
| 甲苯 | 油漆、聚氨酯泡沫、气凝胶 |
| 邻苯二甲酸酐 | 环氧树脂家具 |
| 挥发性胺 | 箱子的腐败退化 |
| 乙苯 | 建筑材料、溶剂、黏合剂 |
| 四氯乙烯 | 吸烟、二手烟 |
| 氯仿 | 穿着或干洗过的衣服、氯化水 |
| 芳烃 | 油漆、黏合剂、汽油、燃烧源 |
| 其他VOCs(酯类和酮类) | 塑料、树脂、香水、增塑剂、香料 |
| 化合物 | 物质来源 |
|---|---|
| 甲醛 | 农药、涂料、压制木材、泡沫 |
| 乙醛 | 胶水、地板材料、皮革霉菌 |
| 对二氯苯 | 房间除臭剂、天花板材料 |
| 二氯甲烷 | 除漆剂、溶剂 |
| 苯乙烯 | 绝缘纺织品、消毒剂、塑料、油漆 |
| 丙烯醛 | 化石燃料燃烧、烟草烟雾 |
| 甲苯 | 油漆、聚氨酯泡沫、气凝胶 |
| 邻苯二甲酸酐 | 环氧树脂家具 |
| 挥发性胺 | 箱子的腐败退化 |
| 乙苯 | 建筑材料、溶剂、黏合剂 |
| 四氯乙烯 | 吸烟、二手烟 |
| 氯仿 | 穿着或干洗过的衣服、氯化水 |
| 芳烃 | 油漆、黏合剂、汽油、燃烧源 |
| 其他VOCs(酯类和酮类) | 塑料、树脂、香水、增塑剂、香料 |
| 催化剂 | VOCs种类 | 浓度 /mL·m-3 | 去除效率 /% | 参考文献 |
|---|---|---|---|---|
| TiO2/硅藻土 | 丙酮 | 10 | 42 | [ |
| TiO2/Mg-Al LDH | 甲苯 | 100 | 74 | [ |
| Pt-TiO2 | 甲基乙基甲酮 | 1 | 73 | [ |
| Pt-TiO2-R | 间二氯苄 | 1 | 73 | [ |
| MOF(Ti) | 乙醛 | 200 | 98 | [ |
| F-TiO2 | 甲苯 | 30 | 80 | [ |
| MOF(Fe)/Fe2O3 | 邻二甲苯 | 25 | 100 | [ |
| Zn-Ti-LDH | 甲苯 | 500 | 75 | [ |
| Zn2SO4/LDH | 甲苯 | 500 | 90 | [ |
| TiO2/O3 | 甲苯 | 100 | 90 | [ |
| IL-PANI-NH2-MIL125(Ti) | 乙醛 | 300 | 92 | [ |
| ZIF-8-T | 甲醛 | 20 | 100 | [ |
| NH2-UiO-66-Zr@TiO2 | 甲苯 | 150 | 77 | [ |
| 催化剂 | VOCs种类 | 浓度 /mL·m-3 | 去除效率 /% | 参考文献 |
|---|---|---|---|---|
| TiO2/硅藻土 | 丙酮 | 10 | 42 | [ |
| TiO2/Mg-Al LDH | 甲苯 | 100 | 74 | [ |
| Pt-TiO2 | 甲基乙基甲酮 | 1 | 73 | [ |
| Pt-TiO2-R | 间二氯苄 | 1 | 73 | [ |
| MOF(Ti) | 乙醛 | 200 | 98 | [ |
| F-TiO2 | 甲苯 | 30 | 80 | [ |
| MOF(Fe)/Fe2O3 | 邻二甲苯 | 25 | 100 | [ |
| Zn-Ti-LDH | 甲苯 | 500 | 75 | [ |
| Zn2SO4/LDH | 甲苯 | 500 | 90 | [ |
| TiO2/O3 | 甲苯 | 100 | 90 | [ |
| IL-PANI-NH2-MIL125(Ti) | 乙醛 | 300 | 92 | [ |
| ZIF-8-T | 甲醛 | 20 | 100 | [ |
| NH2-UiO-66-Zr@TiO2 | 甲苯 | 150 | 77 | [ |
| 目标VOCs | 催化剂 | 主要中间产物 | 分析方法 | 参考文献 |
|---|---|---|---|---|
| 甲苯 | Sr2Sb2O7 | 苯甲醇,苯甲醛,苯甲酸 | in situ DRIFTS | [ |
| Pt/CeO2 | 苄,苯甲醇,苯甲醛,苯甲酸,甲酸盐 | in situ DRIFTS | [ | |
| MIL-125(Ti) | 苯甲醇,苯甲醛,苯甲酸,甲酸盐和乙酸盐 | FTIR,GC-MS | [ | |
| Co3O4/TiO2 | 苯甲醇,苯甲醛,苯甲酸,丙酮 | in situ DRIFTS | [ | |
| TiO2/CeO2 | 苯甲醇,苯甲醛和苯甲酸,甲酸和草酸 | UV-Vis DRS | [ | |
| 苯 | nano-TiO2 | 苯酚,对苯二酚,对苯并醌,儿茶酚,邻苯并醌 | DFT,CG-MS | [ |
| W-MnO2 | 苯,苯甲酸,马来酸,乙酸 | in situ DRIFTS | [ | |
| Mn-Cu/Al2O3 | 一氧化碳,甲酸 | FTIR | [ | |
| 甲醛 | MnOOH/MnO2 | 甲酸 | FTIR | [ |
| CaSn(OH)6 | 甲酸 | in situ DRIFTS | [ | |
| TiO2/硅藻土 | 甲酸,甲酸盐 | in situ DRIFTS | [ |
| 目标VOCs | 催化剂 | 主要中间产物 | 分析方法 | 参考文献 |
|---|---|---|---|---|
| 甲苯 | Sr2Sb2O7 | 苯甲醇,苯甲醛,苯甲酸 | in situ DRIFTS | [ |
| Pt/CeO2 | 苄,苯甲醇,苯甲醛,苯甲酸,甲酸盐 | in situ DRIFTS | [ | |
| MIL-125(Ti) | 苯甲醇,苯甲醛,苯甲酸,甲酸盐和乙酸盐 | FTIR,GC-MS | [ | |
| Co3O4/TiO2 | 苯甲醇,苯甲醛,苯甲酸,丙酮 | in situ DRIFTS | [ | |
| TiO2/CeO2 | 苯甲醇,苯甲醛和苯甲酸,甲酸和草酸 | UV-Vis DRS | [ | |
| 苯 | nano-TiO2 | 苯酚,对苯二酚,对苯并醌,儿茶酚,邻苯并醌 | DFT,CG-MS | [ |
| W-MnO2 | 苯,苯甲酸,马来酸,乙酸 | in situ DRIFTS | [ | |
| Mn-Cu/Al2O3 | 一氧化碳,甲酸 | FTIR | [ | |
| 甲醛 | MnOOH/MnO2 | 甲酸 | FTIR | [ |
| CaSn(OH)6 | 甲酸 | in situ DRIFTS | [ | |
| TiO2/硅藻土 | 甲酸,甲酸盐 | in situ DRIFTS | [ |
| [1] | GUO Yunlong, WEN Meicheng, LI Guiying, et al. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: A critical review[J]. Applied Catalysis B: Environmental, 2021, 281: 119447. |
| [2] | 宋晶璟, 孙晓丹. 光催化涂层净化室内VOCs研究进展[J]. 精细化工, 2023, 40(8): 1679-1687. |
| SONG Jingjing, SUN Xiaodan. Advances in photocatalytic coating for indoor VOCs purification[J]. Fine Chemicals, 2023, 40(8): 1679-1687. | |
| [3] | 路潇, 王斌, 梁璐. 空气污染与心脏骤停相关研究进展[J]. 职业卫生与应急救援, 2023, 41(6): 787-790. |
| LU Xiao, WANG Bin, LIANG Lu. Progress of research on air pollution and cardiac arrest[J]. Occupational Health and Emergency Rescue, 2023, 41(6): 787-790. | |
| [4] | 李东阳. 有机废气VOCs治理技术及应用研究[J]. 节能与环保, 2022(9): 85-87. |
| LI Dongyang. Study on VOCs treatment technology and application of organic waste gas[J]. Energy Conservation & Environmental Protection, 2022(9): 85-87. | |
| [5] | 李京尧. 二氧化钛基光催化剂的结构设计及光催化性能研究[D]. 长春: 吉林大学, 2024. |
| LI Jingyao. Structural design and photocatalytic performances of titania based photocatalysts[D]. Changchun: Jilin University, 2024. | |
| [6] | 刘人源, 廖润华, 周凡, 等. 二氧化钛基光催化降解甲醛的研究进展[J]. 中国陶瓷, 2021, 57(10): 1-7. |
| LIU Renyuan, LIAO Runhua, ZHOU Fan, et al. The research progress of the photocatalytic degradation of formaldehyde by titanium dioxide[J]. China Ceramics, 2021, 57(10): 1-7. | |
| [7] | ZHANG Lianfeng, MORALEJO Carol, ANDERSON William A. A review of the influence of humidity on photocatalytic decomposition of gaseous pollutants on TiO2‐based catalysts[J]. The Canadian Journal of Chemical Engineering, 2020, 98(1): 263-273. |
| [8] | 张焱, 张婷婷, 单凤君, 等. 光催化氧化技术用于室内挥发性有机化合物净化的研究进展[J]. 辽宁化工, 2023, 52(9): 1354-1358. |
| ZHANG Yan, ZHANG Tingting, SHAN Fengjun, et al. Research progress of photocatalytic oxidation for indoor purification of volatile organic compounds[J]. Liaoning Chemical Industry, 2023, 52(9): 1354-1358. | |
| [9] | Javier GONZÁLEZ-MARTÍN, KRAAKMAN Norbertus, Cristina PÉREZ, et al. A state-of-the-art review on indoor air pollution and strategies for indoor air pollution control[J]. Chemosphere, 2021, 262: 128376. |
| [10] | 惠婷, 曹占平, 李欣航, 等. 改性二氧化钛吸附性能研究进展[J]. 天津化工, 2021, 35(2): 6-9. |
| HUI Ting, CAO Zhanping, LI Xinhang, et al. Research progress of doped titanium dioxide[J]. Tianjin Chemical Industry, 2021, 35(2): 6-9. | |
| [11] | LI Qi, LI Fatang. Recent advances in surface and interface design of photocatalysts for the degradation of volatile organic compounds[J]. Advances in Colloid and Interface Science, 2020, 284: 102275. |
| [12] | ZHAN Yujie, JI Jian, HUANG Haibao, et al. A facile VUV/H2O system without auxiliary substances for efficient degradation of gaseous toluene[J]. Chemical Engineering Journal, 2018, 334: 1422-1429. |
| [13] | LIN Wenjiao, XIE Xiaofeng, WANG Xiao, et al. Efficient adsorption and sustainable degradation of gaseous acetaldehyde and o-xylene using rGO-TiO2 photocatalyst[J]. Chemical Engineering Journal, 2018, 349: 708-718. |
| [14] | FU Shifeng, ZHENG Yuan, ZHOU Xiaobo, et al. Visible light promoted degradation of gaseous volatile organic compounds catalyzed by Au supported layered double hydroxides: Influencing factors, kinetics and mechanism[J]. Journal of Hazardous Materials, 2019, 363: 41-54. |
| [15] | 简垲琳, 王宁. C掺杂TiO2光催化剂制备及降解空气中甲醛研究[J]. 化工生产与技术, 2023, 29(2): 28-32, 63. |
| JIAN Kailin, WANG Ning. Preparation of C doped TiO2 photocatalyst and study on its degradation of formaldehyde in air[J]. Chemical Production and Technology, 2023, 29(2): 28-32, 63. | |
| [16] | CHEN Dongjie, CHENG Yanling, ZHOU Nan, et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review[J]. Journal of Cleaner Production, 2020, 268: 121725. |
| [17] | ARMAKOVIĆ Sanja J, SAVANOVIĆ Maria M, Stevan ARMAKOVIĆ. Titanium dioxide as the most used photocatalyst for water purification: An overview[J]. Catalysts, 2022, 13(1): 26. |
| [18] | PENG Linghui, WANG Haiyu, LI Guiying, et al. Bioinspired artificial spider silk photocatalyst for the high-efficiency capture and inactivation of bacteria aerosols[J]. Nature Communications, 2023, 14(1): 2412. |
| [19] | LI Xiuquan, ZHANG Li, YANG Zhongqing, et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review[J]. Separation and Purification Technology, 2020, 235: 116213. |
| [20] | ZHANG Guangxin, PEYRAVI Arman, HASHISHO Zaher, et al. Integrated adsorption and photocatalytic degradation of VOCs using a TiO2/diatomite composite: Effects of relative humidity and reaction atmosphere[J]. Catalysis Science & Technology, 2020, 10(8): 2378-2388. |
| [21] | ZHANG Jinjian, VIKRANT Kumar, KIM Ki-Hyun, et al. Unveiling the collective effects of moisture and oxygen on the photocatalytic degradation of m-xylene using a titanium dioxide supported platinum catalyst[J]. Chemical Engineering Journal, 2022, 439: 135747. |
| [22] | MASRESHA Girma, Anuradha JABASINGH S, KEBEDE Shimelis, et al. A review of prospects and challenges of photocatalytic decomposition of volatile organic compounds (VOCs) under humid environment[J]. The Canadian Journal of Chemical Engineering, 2023, 101(12): 6905-6918. |
| [23] | Van Thi Thanh HO, CHAU Dung Hung, Khang Quang BUI, et al. A high-performing nanostructured Ir doped-TiO2 for efficient photocatalytic degradation of gaseous toluene[J]. Inorganics, 2022, 10(3): 29. |
| [24] | 麻新宇. TiO2/伊利石复合光催化剂的制备及光催化能力研究[D]. 延吉: 延边大学, 2024. |
| MA Xinyu. Preparation and photocatalytic capacity of TiO2/illite composite photocatalyst[D]. Yanji: Yanbian University, 2024. | |
| [25] | 靳亚斌, 徐甜甜, 刘海华, 等. 光催化降解甲基橙及强化工艺研究进展[J]. 工业催化, 2023, 31(9): 16-24. |
| JIN Yabin, XU Tiantian, LIU Haihua, et al. Research progress on photocatalytic degradation of methyl orange and enhanced catalytic process[J]. Industrial Catalysis, 2023, 31(9): 16-24. | |
| [26] | PAN Longkai, ZHANG Minggang, MEI Hui, et al. 3D bionic reactor optimizes photon and mass transfer by expanding reaction space to enhance photocatalytic CO2 reduction[J]. Separation and Purification Technology, 2022, 301: 121974. |
| [27] | LIU Jingyin, LIU Yuwei, ZHANG Wenjing, et al. Efficient VOC removal over grape-like GdCoO3 perovskite prepared from the viscous mixture[J]. Materials Letters, 2024, 357: 135796. |
| [28] | SHONEYE Ayoola, CHANG Jang SEN, CHONG Mengnan, et al. Recent progress in photocatalytic degradation of chlorinated phenols and reduction of heavy metal ions in water by TiO2-based catalysts[J]. International Materials Reviews, 2022, 67(1): 47-64. |
| [29] | 田松, 苏敏, 王霞. 钒表面掺杂TiO2对甲醛的催化降解影响[J]. 黑龙江科学, 2019, 10(18): 20-21. |
| TIAN Song, SU Min, WANG Xia. Effect of vanadium surface doping with TiO2 on the catalytic degradation of formaldehyde[J]. Heilongjiang Science, 2019, 10(18): 20-21. | |
| [30] | 廖芳. 镱掺杂二氧化钛/活性炭纤维的制备及其在有机污染物去除中的应用[D]. 上海: 上海师范大学, 2019. |
| LIAO Fang. Preparation of ytterbium-doped titanium dioxide/activated carbon fibers and their application in organic pollutant removal[D]. Shanghai: Shanghai Normal University, 2019. | |
| [31] | 欧阳园园, 王松, 蒋大富, 等. 非金属离子掺杂对二氧化钛光催化降解有机染料的研究进展[J]. 辽宁化工, 2021, 50(8): 1186-1192. |
| OUYANG Yuanyuan, WANG Song, JIANG Dafu, et al. Research progress of non-metal ion doped TiO2 for photocatalytical degradation of organic pollutants[J]. Liaoning Chemical Industry, 2021, 50(8): 1186-1192. | |
| [32] | 吴国斐. 硫掺杂TiO2(001)和(101)表面与甲醛分子相互作用的密度泛函理论研究[D]. 南宁: 广西大学, 2020. |
| WU Guofei. Dft study of the interaction between HCHO and S-doped TiO2 (001) and (101) surfaces[D]. Nanning: Guangxi University, 2020. | |
| [33] | MAARISETTY Dileep, BARAL Saroj Sundar. Defect engineering in photocatalysis: Formation, chemistry, optoelectronics, and interface studies[J]. Journal of Materials Chemistry A, 2020, 8(36): 18560-18604. |
| [34] | 杜瑞成, 王亮, 李燕, 等. 新型TiO2基光催化剂改性降解VOCs的研究进展[J]. 当代化工研究, 2023(6): 28-30. |
| DU Ruicheng, WANG Liang, LI Yan, et al. Research progress of new modified TiO2-based photocatalytic materials for degradation of VOCs[J]. Modern Chemical Research, 2023(6): 28-30. | |
| [35] | ZHAO Yunxuan, ZHAO Yufei, SHI Run, et al. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700nm[J]. Advanced Materials, 2019, 31(16): 1806482. |
| [36] | WANG Huijie, LI Xin, ZHAO Xiaoxue, et al. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies[J]. Chinese Journal of Catalysis, 2022, 43(2): 178-214. |
| [37] | KHALID N R, ARSHAD Amna, TAHIR M B, et al. Fabrication of p-n heterojunction Ag2O@Ce2O nanocomposites make enables to improve photocatalytic activity under visible light[J]. Applied Nanoscience, 2021, 11(1): 199-206. |
| [38] | ZHANG Xin, SUN Shaodong, CUI Jie, et al. Spatial charge separation and high-index facet dependence in polyhedral Cu2O type-Ⅱ surface heterojunctions for photocatalytic activity enhancement[J]. Inorganic Chemistry Frontiers, 2021, 8(10): 2603-2610. |
| [39] | CHEN Jinfeng, ZHANG Xiaodong, SHI Xiaoyu, et al. Synergistic effects of octahedral TiO2-MIL-101(Cr) with two heterojunctions for enhancing visible-light photocatalytic degradation of liquid tetracycline and gaseous toluene[J]. Journal of Colloid and Interface Science, 2020, 579: 37-49. |
| [40] | 刘敏, 黄秀, 张理元. S型异质结光催化剂的研究进展[J]. 无机盐工业, 2024, 56(7): 18-27. |
| LIU Min, HUANG Xiu, ZHANG Liyuan. Research progress of S-type heterojunction photocatalysts[J]. Inorganic Chemicals Industry, 2024, 56(7): 18-27. | |
| [41] | Nóra JUSTH, MIKULA Gergő János, BAKOS László Péter, et al. Photocatalytic properties of TiO2@polymer and TiO2@carbon aerogel composites prepared by atomic layer deposition[J]. Carbon, 2019, 147: 476-482. |
| [42] | HU Xiaolong, SONG Junying, ZHENG Shuilin, et al. Insight into the defective sites of TiO2/sepiolite composite on formaldehyde removal and H2 evolution[J]. Materials Today Energy, 2022, 24: 100932. |
| [43] | ZHANG Guangxin, LIU Yangyu, HASHISHO Zaher, et al. Adsorption and photocatalytic degradation performances of TiO2/diatomite composite for volatile organic compounds: Effects of key parameters[J]. Applied Surface Science, 2020, 525: 146633. |
| [44] | 胡旌钰, 李茹, 冯燕. 室内空气污染物分类及净化技术研究进展[J]. 当代化工, 2022, 51(2): 418-422. |
| HU Jingyu, LI Ru, FENG Yan. Research progress of indoor air pollutant classification and purification technology[J]. Contemporary Chemical Industry, 2022, 51(2): 418-422. | |
| [45] | 姚明俊. 室内香烟、电子烟释放甲醛和VOCs的散发特征及健康风险分析[D]. 北京: 北京建筑大学, 2023. |
| YAO Minjun. Emission characteristics and health risk analysis of formaldehyde and VOCs emitted from indoor cigarettes and e-cigarettes[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2023. | |
| [46] | VARDOULAKIS Sotiris, GIAGLOGLOU Evanthia, STEINLE Susanne, et al. Indoor exposure to selected air pollutants in the home environment: A systematic review[J]. International Journal of Environmental Research and Public Health, 2020, 17(23): 8972. |
| [47] | 黄雪燕, 庄晶晶, 胡学靖, 等. 室内VOCs光催化法处理研究进展[J]. 环境保护与循环经济, 2021, 41(3): 29-32. |
| HUANG Xueyan, ZHUANG Jingjing, HU Xuejing, et al. Research progress on photocatalytic treatment of indoor VOCs[J]. Environmental Protection and Circular Economy, 2021, 41(3): 29-32. | |
| [48] | DONG Xingan, CUI Zhihao, SUN Yanjuan, et al. Humidity-independent photocatalytic toluene mineralization benefits from the utilization of edge hydroxyls in layered double hydroxides (LDHs): A combined operando and theoretical investigation[J]. ACS Catalysis, 2021, 11(13): 8132-8139. |
| [49] | YOU Ji Won, VIKRANT Kumar, Dae Hwan LIM, et al. Photocatalytic potential of a titanium dioxide-supported platinum catalyst against VOCs with complicated composition under varying humidity conditions[J]. Journal of Cleaner Production, 2022, 371: 133487. |
| [50] | GAO Zhu, WANG Jiaxing, MUHAMMAD Yaseen, et al. Enhanced moisture-resistance and excellent photocatalytic performance of synchronous N/Zn-decorated MIL-125(Ti) for vaporous acetaldehyde degradation[J]. Chemical Engineering Journal, 2020, 388: 124389. |
| [51] | XIE Ruijie, LEI Dongxue, ZHAN Yujie, et al. Efficient photocatalytic oxidation of gaseous toluene over F-doped TiO2 in a wet scrubbing process[J]. Chemical Engineering Journal, 2020, 386: 121025. |
| [52] | CHEN Lu, WANG Xiao, RAO Zepeng, et al. In-situ synthesis of Z-Scheme MIL-100(Fe)/α-Fe2O3 heterojunction for enhanced adsorption and visible-light photocatalytic oxidation of o-xylene[J]. Chemical Engineering Journal, 2021, 416: 129112. |
| [53] | LIU Yongyi, CHEN Si, LI Kanglu, et al. Promote the activation and ring opening of intermediates for stable photocatalytic toluene degradation over Zn-Ti-LDH[J]. Journal of Colloid and Interface Science, 2022, 606: 1435-1444. |
| [54] | LEI Ben, CUI Wen, CHEN Peng, et al. Rational design of LDH/Zn2SnO4 heterostructures for efficient mineralization of toluene through boosted interfacial charge separation[J]. Energy & Environmental Materials, 2023, 6(1): 12291. |
| [55] | RIBEIRO Bárbara Maria Borges, NONATO Renato Carajelescov, FUJIMOTO Tânia Miyoko, et al. Toluene degradation by heterogeneous photocatalysis assisted with ozone in a tubular reactor: Analysis over the reactor length[J]. Environmental Science and Pollution Research, 2021, 28(19): 24216-24223. |
| [56] | SHAH Syed Jalil, WANG Ruimeng, GAO Zhu, et al. IL-assisted synthesis of defect-rich polyaniline/NH2-MIL-125 nanohybrids with strengthened interfacial contact for ultra-fast photocatalytic degradation of acetaldehyde under high humidity[J]. Chemical Engineering Journal, 2021, 411: 128590. |
| [57] | WANG Tianqi, WANG Yufei, SUN Mingzhe, et al. Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde[J]. Chemical Science, 2020, 11(26): 6670-6681. |
| [58] | ZHOU Yi, OUYANG Weilong, WANG Yuejun, et al. Core-shell structured NH2-UiO-66@TiO2 photocatalyst for the degradation of toluene under visible light irradiation[J]. Acta Physico Chimica Sinica, 2020, 37(8): 2009045-0. |
| [59] | 吴儒雅. 室内甲醛污染影响因素的实证研究[J]. 福建建材, 2023(11): 23-25, 91. |
| WU Ruya. Empirical study on influencing factors of indoor formaldehyde pollution[J]. Fujian Building Materials, 2023(11): 23-25, 91. | |
| [60] | 王聪宇. TiO2基复合材料在可见光下对气态乙醛的降解特性研究[D]. 上海: 中国科学院大学(中国科学院上海硅酸盐研究所), 2021. |
| WANG Congyu. The degradation of gaseous acetaldehyde by TiO2-based composites under visible light[D]. Shanghai: University of Chinese Academy of Sciences (Chinese Academy of Sciences Shanghai Silicate Institute), 2021. | |
| [61] | 周健, 王新伟, 覃道枞, 等. 自然通风对学生宿舍室内苯污染影响的数值模拟[J]. 工业安全与环保, 2022, 48(1): 75-80. |
| ZHOU Jian, WANG Xinwei, QIN Daocong, et al. Numerical simulation of natural ventilation effect on benzene pollution in student dormitory[J]. Industrial Safety and Environmental Protection, 2022, 48(1): 75-80. | |
| [62] | CHEN Lücun, CHEN Peng, WANG Hong, et al. Surface lattice oxygen activation on Sr2Sb2O7 enhances the photocatalytic mineralization of toluene: From reactant activation, intermediate conversion to product desorption[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5153-5164. |
| [63] | FAN Jie, SUN Yuhang, FU Mingli, et al. Modulate the metal support interactions to optimize the surface-interface features of Pt/CeO2 catalysts for enhancing the toluene oxidation[J]. Journal of Hazardous Materials, 2022, 424: 127505. |
| [64] | ZHANG Xiaodong, CHEN Jinfeng, JIANG Shuntong, et al. Enhanced photocatalytic degradation of gaseous toluene and liquidus tetracycline by anatase/rutile titanium dioxide with heterophase junction derived from materials of Institut Lavoisier-125(Ti): Degradation pathway and mechanism studies[J]. Journal of Colloid and Interface Science, 2021, 588: 122-137. |
| [65] | YANG Yang, ZHAO Shenghao, BI Fukun, et al. Highly efficient photothermal catalysis of toluene over Co3O4/TiO2 p-n heterojunction: The crucial roles of interface defects and band structure[J]. Applied Catalysis B: Environmental, 2022, 315: 121550. |
| [66] | BELLARDITA Marianna, FIORENZA Roberto, Luisa D’URSO, et al. Exploring the photothermo-catalytic performance of brookite TiO2-CeO2 composites[J]. Catalysts, 2020, 10(7): 765. |
| [67] | LIN Zhifeng, SHEN Wenhao, CHEN Xiaoquan, et al. Impact of intermediate products on benzene photocatalytic oxidation in pulp mills: Experimental and adsorption simulation study[J]. Applied Surface Science, 2020, 529: 147130. |
| [68] | MA Jiami, WANG Jinlong, DANG Yanliu. Photo-assisted oxidation of gaseous benzene on tungsten-doped MnO2 at lower temperature[J]. Chemical Engineering Journal, 2020, 388: 124387. |
| [69] | SHANG Kefeng, REN Jingyu, ZHANG Qi, et al. Successive treatment of benzene and derived byproducts by a novel plasma catalysis-adsorption process[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105767. |
| [70] | ZHENG Jiayu, ZHOU Kailing, ZHAO Wenkang, et al. Enhanced the synergistic degradation effect between active hydroxyl and reactive oxygen species for indoor formaldehyde based on platinum atoms modified MnOOH/MnO2 catalyst[J]. Journal of Colloid and Interface Science, 2022, 628: 359-370. |
| [71] | WANG Hong, DONG Xing’an, TANG Ruofei, et al. Selective breakage of CH bonds in the key oxidation intermediates of gaseous formaldehyde on self-doped CaSn(OH)6 cubes for safe and efficient photocatalysis[J]. Applied Catalysis B: Environmental, 2020, 277: 119214. |
| [72] | YUAN Fang, LI Chunquan, YANG Renfeng, et al. Polyaniline π-electron mediated electron-hole separation of TiO2/diatomite composite for enhancing visible light-induced indoor formaldehyde degradation[J]. Applied Surface Science, 2023, 612: 155855. |
| [73] | WU Qiqi, YE Jiani, QIAO Wei, et al. Inhibit the formation of toxic methylphenolic by-products in photo-decomposition of formaldehyde-toluene/xylene mixtures by Pd cocatalyst on TiO2 [J]. Applied Catalysis B: Environmental, 2021, 291: 120118. |
| [74] | 惠世恩, 朱新伟, 王登辉, 等. 活性炭负载TiO2吸附与光催化降解甲醛研究进展[J]. 洁净煤技术, 2022, 28(2): 1-12. |
| HUI Shien, ZHU Xinwei, WANG Denghui, et al. Research progress on adsorption and photocatalytic degradation of formaldehyde by TiO2 supported on activated carbon[J]. Clean Coal Technology, 2022, 28(2): 1-12. | |
| [75] | 沈晓玲. Fe/I共掺杂TiO2的制备及其光催化降解气相苯的研究[D]. 徐州: 中国矿业大学, 2019. |
| SHEN Xiaoling. Preparation of Fe/I co-doped TiO2 and its photocatalytic degradation of gas-phase benzene[D]. Xuzhou: China University of Mining and Technology, 2019. | |
| [76] | HE Chi, CHENG Jie, ZHANG Xin, et al. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-4568. |
| [77] | LU Tonglu, ZHANG Chunxia, DU Fangyuan, et al. Mutual inhibition effects on the synchronous conversion of benzene, toluene, and xylene over MnO x catalysts[J]. Journal of Colloid and Interface Science, 2023, 641: 791-802. |
| [78] | RAO Zepeng, SHI Gansheng, WANG Zhuang, et al. Photocatalytic degradation of gaseous VOCs over Tm3+-TiO2: Revealing the activity enhancement mechanism and different reaction paths[J]. Chemical Engineering Journal, 2020, 395: 125078. |
| [79] | LI Jieyuan, CHEN Ruimin, CUI Wen, et al. Synergistic photocatalytic decomposition of a volatile organic compound mixture: High efficiency, reaction mechanism, and long-term stability[J]. ACS Catalysis, 2020, 10(13): 7230-7239. |
| [80] | WANG Wenjun, LIN Fawei, AN Taicheng, et al. Photocatalytic mineralization of indoor VOC mixtures over unique ternary TiO2/C/MnO2 with high adsorption selectivity[J]. Chemical Engineering Journal, 2021, 425: 131678. |
| [1] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [2] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [3] | ZHANG Haipeng, QIN Shanshan, WANG Yuxuan, YU Haibiao. Preparation of 3.0F-Ag x Co catalysts for N2O decomposition [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4999-5005. |
| [4] | CHENG Jingwen, CHEN Qingcai, YU Bo, LIU Huan, XU Tengfei, HU Yukun, LIU Sitong. Detection performance and mechanism of VOCs by different metal-doped SnO2-based gas sensors [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5140-5149. |
| [5] | SUN Mengyuan, LU Shijian, LIU Ling, XUE Yanyang, ZHANG Yunrong, DONG Qi, KANG Guojun. Research progress of MOF and their derivatives in carbon capture [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5339-5350. |
| [6] | LI Zeng, ZHAO Yunpeng, LI Yuhui, LIU Nan, ZHU Chunmeng, SHI Xiaogang, GAO Jinsen, LAN Xingying. Abnormal diagnosis of catalyst loss for FCC disengager based on CFD simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4430-4442. |
| [7] | ZHAO Yongming, BU Yifeng, WANG Tao, DU Bing, MEN Zhuowu. Integrated optimization of catalyst dynamic replacement and steady-state Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4536-4544. |
| [8] | CHE Xinghao, LUO Chenhui, DUAN Dongquan, FENG Yajuan, CAO Junya, ZHANG Xianglan, XIE Qiang. Safety evaluation system and application of VOCs treatment engineering in industrial coating industry based on process simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4741-4753. |
| [9] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| [10] | LU Peng, ZHANG Di, LIU Yaoyao, YU Wanjin, LIU Wucan, ZHANG Jianjun. Research progress of catalysts for gas-phase dehydrofluorination to synthesize C2 hydrofluoroolefins [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3907-3916. |
| [11] | GAO Jiaojiao, YAN Shiyu, YANG Taishun, XIE Shangzhi, YANG Yanjuan, XU Jing. Effect of alumina support crystal structure of Ru-based catalysts on polyethylene hydrogenolysis performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3917-3927. |
| [12] | CHEN Dongjian, SUN Yuqian, YIN Fengxiang. Preparation of FeNi3-Fe3O4/CN electrocatalysts and their electrocatalytic oxygen evolution performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3928-3937. |
| [13] | YU Ning, WANG Qiuyue, WANG Zhicai, GAO Ziyi, CHAI Yongming, DONG Bin. Double-sites synergistic regulation for boosting water oxidation of La1-x Ni1-y Fe y O3‑δ [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3976-3984. |
| [14] | SHI Xiuding, WANG Yongquan, ZENG Jing, SU Chang, HONG Junming. Nanotubular Co-N-C activated percarbonate for tetracycline degradation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3041-3052. |
| [15] | LI Peiyi, SUN Bolong, LIU Ruiyan, ZHOU Xinyao, LIU Ruilin, HU Yuanyuan, XU Gongtao, LI Xinping. Preparation of sodium alginate/titanium dioxide composite porous material and its application in oil-water separation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3053-3061. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |