Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (6): 3154-3162.DOI: 10.16085/j.issn.1000-6613.2024-1984
• Special column: Frontiers of interdisciplinary technologies in chemical engineering and environmental sciences • Previous Articles
YAO Ruwei1,2(
), SONG Yueyin1,2, NIU Qinqin1,2, LI Congming1,2(
)
Received:2024-12-05
Revised:2025-01-16
Online:2025-07-08
Published:2025-06-25
Contact:
YAO Ruwei, LI Congming
姚如伟1,2(
), 宋乐音1,2, 牛琴琴1,2, 李聪明1,2(
)
通讯作者:
姚如伟,李聪明
作者简介:姚如伟(1993—),女,讲师,硕士生导师。研究方向为二氧化碳催化利用。E-mail:yaoruwei@tyut.edu.cn。
基金资助:CLC Number:
YAO Ruwei, SONG Yueyin, NIU Qinqin, LI Congming. Na-S co-modified iron catalysts for CO2 hydrogenation to C2+ alcohols[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3154-3162.
姚如伟, 宋乐音, 牛琴琴, 李聪明. Na-S双助剂修饰铁基催化剂催化CO2加氢制C2+醇[J]. 化工进展, 2025, 44(6): 3154-3162.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1984
| 催化剂 | Na质量分数/% | S质量分数/% | 比表面积/m2·g-1 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 |
|---|---|---|---|---|---|
| NaS-Fe-1 | 1.0 | 0.04 | 49.7 | 0.21 | 0 |
| NaS-Fe-2 | 1.4 | 0.1 | 50.3 | 0.22 | 0 |
| NaS-Fe-3 | 2.4 | 0.6 | 51.8 | 0.20 | 0 |
| NaS-Fe-4 | 6.0 | 3.0 | 35.0 | 0.15 | 0 |
| 催化剂 | Na质量分数/% | S质量分数/% | 比表面积/m2·g-1 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 |
|---|---|---|---|---|---|
| NaS-Fe-1 | 1.0 | 0.04 | 49.7 | 0.21 | 0 |
| NaS-Fe-2 | 1.4 | 0.1 | 50.3 | 0.22 | 0 |
| NaS-Fe-3 | 2.4 | 0.6 | 51.8 | 0.20 | 0 |
| NaS-Fe-4 | 6.0 | 3.0 | 35.0 | 0.15 | 0 |
| 催化剂 | 新鲜催化剂中表面元素摩尔比/% | 反应后催化剂中表面元素摩尔比/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Fe | S | Na | O | C | Fe | S | Na | O | C | |
| NaS-Fe-1 | 29.45 | 0.41 | 6.59 | 51.85 | 11.70 | 11.85 | 0.45 | 14.61 | 40.54 | 32.55 |
| NaS-Fe-2 | 28.91 | 0.49 | 6.76 | 51.58 | 12.26 | 11.61 | 0.51 | 14.93 | 41.03 | 31.92 |
| NaS-Fe-3 | 29.55 | 0.44 | 5.92 | 51.86 | 12.23 | 14.49 | 1.05 | 13.37 | 45.13 | 25.96 |
| NaS-Fe-4 | 28.73 | 0.67 | 5.14 | 51.85 | 13.61 | 12.61 | 2.76 | 14.19 | 45.25 | 25.19 |
| 催化剂 | 新鲜催化剂中表面元素摩尔比/% | 反应后催化剂中表面元素摩尔比/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Fe | S | Na | O | C | Fe | S | Na | O | C | |
| NaS-Fe-1 | 29.45 | 0.41 | 6.59 | 51.85 | 11.70 | 11.85 | 0.45 | 14.61 | 40.54 | 32.55 |
| NaS-Fe-2 | 28.91 | 0.49 | 6.76 | 51.58 | 12.26 | 11.61 | 0.51 | 14.93 | 41.03 | 31.92 |
| NaS-Fe-3 | 29.55 | 0.44 | 5.92 | 51.86 | 12.23 | 14.49 | 1.05 | 13.37 | 45.13 | 25.96 |
| NaS-Fe-4 | 28.73 | 0.67 | 5.14 | 51.85 | 13.61 | 12.61 | 2.76 | 14.19 | 45.25 | 25.19 |
| 催化剂 | CO2峰面积 | CO峰面积 | 峰面积比CO/CO2 |
|---|---|---|---|
| NaS-Fe-1 | 39.6 | 62.0 | 1.57 |
| NaS-Fe-2 | 33.0 | 45.6 | 1.38 |
| NaS-Fe-3 | 100 | 72.8 | 0.73 |
| NaS-Fe-4 | 132.9 | 94.6 | 0.71 |
| 催化剂 | CO2峰面积 | CO峰面积 | 峰面积比CO/CO2 |
|---|---|---|---|
| NaS-Fe-1 | 39.6 | 62.0 | 1.57 |
| NaS-Fe-2 | 33.0 | 45.6 | 1.38 |
| NaS-Fe-3 | 100 | 72.8 | 0.73 |
| NaS-Fe-4 | 132.9 | 94.6 | 0.71 |
| [1] | 赵锦波, 卞凤鸣. CO2化学转化基础与应用研究进展[J]. 化工进展, 2022, 41(S1): 524-535. |
| ZHAO Jinbo, BIAN Fengming. Progress on basis and application of CO2 chemical conversion technologies[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 524-535. | |
| [2] | 闫帅, 杨海平, 陈应泉, 等. CO2光热催化还原研究进展[J]. 化工学报, 2022, 73(10): 4298-4310. |
| YAN Shuai, YANG Haiping, CHEN Yingquan, et al. Recent advances in photothermal catalysis of CO2 reduction[J]. CIESC Journal, 2022, 73(10): 4298-4310. | |
| [3] | WANG Menglin, LUO Lei, WANG Chuanhao, et al. Heterogeneous catalysts toward CO2 hydrogenation for sustainable carbon cycle[J]. Accounts of Materials Research, 2022, 3(6): 565-571. |
| [4] | REN Yingyu, YANG Yusen, WEI Min. Recent advances on heterogeneous non-noble metal catalysts toward selective hydrogenation reactions[J]. ACS Catalysis, 2023, 13(13): 8902-8924. |
| [5] | GAO Jiajian, SHIONG Choo Sze Simon, LIU Yan. Reduction of CO2 to chemicals and fuels: Thermocatalysis versus electrocatalysis[J]. Chemical Engineering Journal, 2023, 472: 145033. |
| [6] | 曾壮, 李柯志, 苑志伟, 等. CO/CO2加氢制低碳醇改性费托合成催化剂研究进展[J]. 化工进展, 2024, 43(6): 3061-3079. |
| ZENG Zhuang, LI Kezhi, YUAN Zhiwei, et al. Advances in modified Fischer-Tropsch synthesis catalysts for CO/CO2 hydrogenation to higher alcohols[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3061-3079. | |
| [7] | Chi Hung VO, Javier PÉREZ-RAMÍREZ, FAROOQ Shamsuzzaman, et al. Prospects of producing higher alcohols from carbon dioxide: A process system engineering perspective[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(36): 11875-11884. |
| [8] | 孔祥宇, 谢亮, 王延民, 等. CO2的捕集及资源化利用[J]. 化工进展, 2022, 41(3): 1187-1198. |
| KONG Xiangyu, XIE Liang, WANG Yanmin, et al. CO2 capture and resource utilization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1187-1198. | |
| [9] | SHENG Yao, POLYNSKI Mikhail V, ESWARAN Mathan K, et al. A review of mechanistic insights into CO2 reduction to higher alcohols for rational catalyst design[J]. Applied Catalysis B: Environmental, 2024, 343: 123550. |
| [10] | CHEN Gaofeng, SYZGANTSEVA Olga A, SYZGANTSEVA Maria A, et al. Hydrophobic dual metal silicate nanotubes for higher alcohol synthesis[J]. Applied Catalysis B: Environmental, 2023, 334: 122840. |
| [11] | DU Pengfei, FAKIR Abdellah Ait EL, ZHAO Shirun, et al. Ethanol synthesis via catalytic CO2 hydrogenation over multi-elemental KFeCuZn/ZrO2 catalyst[J]. Chemical Science, 2024, 15(38): 15925-15934. |
| [12] | ZHANG Qian, WANG Sen, SHI Xuerong, et al. Conversion of CO2 to higher alcohols on K-CuZnAl/Zr-CuFe composite[J]. Applied Catalysis B: Environment and Energy, 2024, 346: 123748. |
| [13] | YANG Haiyan, DANG Yaru, CUI Xu, et al. Selective synthesis of olefins via CO2 hydrogenation over transition-metal-doped iron-based catalysts[J]. Applied Catalysis B: Environmental, 2023, 321: 122050. |
| [14] | WANG Yanqiu, ZHOU Ying, ZHANG Xinxin, et al. PdFe alloy-Fe5C2 interfaces for efficient CO2 hydrogenation to higher alcohols[J]. Applied Catalysis B: Environment and Energy, 2024, 345: 123691. |
| [15] | LIU Tangkang, XU Di, SONG Mengyang, et al. K-ZrO2 interfaces boost CO2 hydrogenation to higher alcohols[J]. ACS Catalysis, 2023, 13(7): 4667-4674. |
| [16] | ZHANG Qian, WANG Sen, GENG Rui, et al. Hydrogenation of CO2 to higher alcohols on an efficient Cr-modified CuFe catalyst[J]. Applied Catalysis B: Environmental, 2023, 337: 123013. |
| [17] | 胡文德, 王仰东, 王传明. 合成气直接催化转化制低碳烯烃研究进展[J]. 化工进展, 2022, 41(9): 4754-4766. |
| HU Wende, WANG Yangdong, WANG Chuanming. Research progress on the direct catalytic conversion of syngas to light olefins[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4754-4766. | |
| [18] | YANG Qingxin, KONDRATENKO Evgenii V. From understanding of catalyst functioning toward controlling selectivity in CO2 hydrogenation to higher hydrocarbons over Fe-based catalysts[J]. Accounts of Materials Research, 2024, 5(11): 1314-1328. |
| [19] | YAO Ruwei, WEI Jian, GE Qingjie, et al. Monometallic iron catalysts with synergistic Na and S for higher alcohols synthesis via CO2 hydrogenation[J]. Applied Catalysis B: Environmental, 2021, 298: 120556. |
| [20] | WEI Jian, GE Qingjie, YAO Ruwei, et al. Directly converting CO2 into a gasoline fuel[J]. Nature Communications, 2017, 8: 15174. |
| [21] | LI Siwei, YANG Jinghe, SONG Chuqiao, et al. Iron carbides: Control synthesis and catalytic applications in CO x hydrogenation and electrochemical HER[J]. Advanced Materials, 2019, 31(50): 1901796. |
| [22] | CHOI Yo Han, JANG Youn Jeong, PARK Hunmin, et al. Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels[J]. Applied Catalysis B: Environmental, 2017, 202: 605-610. |
| [23] | SUN Yanan, WU Yimin, SHAN Honghong, et al. Studies on the promoting effect of sulfate species in catalytic dehydrogenation of propane over Fe2O3/Al2O3 catalysts[J]. Catalysis Science & Technology, 2015, 5(2): 1290-1298. |
| [24] | MCCUE Alan J, ANDERSON James A. Sulfur as a catalyst promoter or selectivity modifier in heterogeneous catalysis[J]. Catalysis Science & Technology, 2014, 4(2): 272-294. |
| [25] | PAALANEN Pasi P, WECKHUYSEN Bert M. Carbon pathways, sodium-sulphur promotion and identification of iron carbides in iron-based Fischer-Tropsch synthesis[J]. ChemCatChem, 2020, 12(17): 4202-4223. |
| [26] | ZHU Jie, WANG Peng, ZHANG Xiaoben, et al. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation[J]. Science Advances, 2022, 8(5): eabm3629. |
| [27] | AHMED Sheraz, IRSHAD Muhammad, YOON Wonjoong, et al. Evaluation of MgO as a promoter for the hydrogenation of CO2 to long-chain hydrocarbons over Fe-based catalysts[J]. Applied Catalysis B: Environmental, 2023, 338: 123052. |
| [28] | QIN Chuan, DU Yixiong, WU Ke, et al. Facet-Controlled Cu-doped and K-promoted Fe2O3 nanosheets for efficient CO2 hydrogenation to liquid hydrocarbons[J]. Chemical Engineering Journal, 2023, 467: 143403. |
| [29] | WEI Jian, SUN Jian, WEN Zhiyong, et al. New insights into the effect of sodium on Fe3O4-based nanocatalysts for CO2 hydrogenation to light olefins[J]. Catalysis Science & Technology, 2016, 6(13): 4786-4793. |
| [30] | NAJARI Sara, SAEIDI Samrand, András SÁPI, et al. Synergistic enhancement of CO2 hydrogenation to C5+ hydrocarbons using mixed Fe5C2 and Na-Fe3O4 catalysts: Effects of oxide/carbide ratio, proximity, and reduction[J]. Chemical Engineering Journal, 2024, 485: 149787. |
| [31] | LI Tingzhen, YANG Yong, TAO Zhichao, et al. Effect of sulfate on an iron manganese catalyst for Fischer-Tropsch synthesis[J]. Journal of Natural Gas Chemistry, 2007, 16(4): 354-362. |
| [32] | XU Jingdong, CHANG Zeying, ZHU Kongtao, et al. Effect of sulfur on α-Al2O3-supported iron catalyst for Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2016, 514: 103-113. |
| [33] | GAO Jie, JIANG Qian, LIU Yuefeng, et al. Probing the enhanced catalytic activity of carbon nanotube supported Ni-LaO x hybrids for the CO2 reduction reaction[J]. Nanoscale, 2018, 10(29): 14207-14219. |
| [34] | YANG Qingxin, KONDRATENKO Vita A, PETROV Sergey A, et al. Identifying performance descriptors in CO2 hydrogenation over iron-based catalysts promoted with alkali metals[J]. Angewandte Chemie International Edition, 2022, 61(22): e202116517. |
| [35] | QI Xingzhen, LIN Tiejun, AN Yunlei, et al. Regulating oxygen vacancies for enhanced higher oxygenate synthesis via syngas[J]. ACS Catalysis, 2023, 13(17): 11566-11579. |
| [36] | IRSHAD Muhammad, CHUN Hee-Joon, KHAN Muhammad Kashif, et al. Synthesis of n-butanol-rich C3+ alcohols by direct CO2 hydrogenation over a stable Cu-Co tandem catalyst[J]. Applied Catalysis B: Environmental, 2024, 340: 123201. |
| [37] | WANG Yang, WANG Wenhang, HE Ruosong, et al. Carbon-based electron buffer layer on ZnO x -Fe5C2-Fe3O4 boosts ethanol synthesis from CO2 hydrogenation[J]. Angewandte Chemie International Edition, 2023, 62(46): e202311786. |
| [38] | JIANG Feng, ZHANG Min, LIU Bing, et al. Insights into the influence of support and potassium or sulfur promoter on iron-based Fischer-Tropsch synthesis: Understanding the control of catalytic activity, selectivity to lower olefins, and catalyst deactivation[J]. Catalysis Science & Technology, 2017, 7(5): 1245-1265. |
| [39] | MILLER Douglass G, MOSKOVITS Martin. A study of the effects of potassium addition to supported iron catalysts in the Fischer-Tropsch reaction[J]. The Journal of Physical Chemistry, 1988, 92(21): 6081-6085. |
| [40] | XU Di, DING Mingyue, HONG Xinlin, et al. Selective C2+ alcohol synthesis from direct CO2 hydrogenation over a Cs-promoted Cu-Fe-Zn catalyst[J]. ACS Catalysis, 2020, 10(9): 5250-5260. |
| [41] | 陈永杰, 邢小芳, 王阳, 等. Fe基CO2加氢制C2+醇催化剂研究进展[J]. 燃料化学学报(中英文), 2024, 52(11): 1580-1593. |
| CHEN Yongjie, XING Xiaofang, WANG Yang, et al. Advances in Fe-based catalysts for the hydrogenation of CO2 to C2+ alcohols[J]. Journal of Fuel Chemistry and Technology, 2024, 52(11): 1580-1593. |
| [1] | SHI Xiuding, WANG Yongquan, ZENG Jing, SU Chang, HONG Junming. Nanotubular Co-N-C activated percarbonate for tetracycline degradation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3041-3052. |
| [2] | GU Shengshen, GUO Meng, REN Xiuxiu, PAN Yang, JIN Dongliang, ZHONG Jing. Research progress of microporous organosilica membranes in CO2 separation [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2846-2855. |
| [3] | FAN Xiaoya, ZHAO Zhen, PENG Qiang. Review on electrocatalytic co-reduction of carbon dioxide and nitrate for urea synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2856-2869. |
| [4] | SU Junjie, LIU Su, ZHOU Haibo, LIU Chang, ZHANG Lin, WANG Yangdong, XIE Zaiku. InZr/SAPO-34 bifunctional catalyst for direct production of light olefins from CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2870-2878. |
| [5] | WANG Ke, HU Deng, WANG Xingbo, SUN Nannan, WEI Wei. Using Fe x Co y Ca3Al dual-functional material on integrated CO2 capture and conversion to syngas [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2888-2897. |
| [6] | MA Zixuan, SHI Ruichen, LIU Mingjie, YANG Yingjie, SONG Ziyu, MEI Xiaopeng, GAO Xiaofeng, HONG Longcheng, YAO Siyu, ZHANG Zhiguo, REN Qilong. Design and performance optimization of reactors for catalytic hydrogen production from cycloalkanes: Frontline progress and challenges [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2919-2937. |
| [7] | BAO Jie, YU Panjie, MA Yongde, ZHANG Hongwei, CAI Zhenping, CAO Yanning, HUANG Kuan, JIANG Lilong. Design of Cu-ZrO2 catalyst and its utilization in hydrogenation of methyl palmitate to fatty alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2997-3008. |
| [8] | ZHU Huihong, LIU Lu, LIU Peng, LI He, YANG Tao, WANG Jifeng, HOU Shuandi, PENG Chong, ZHAO Yiyi, PAN Yunxiang. Construction of hydrogenation catalysts for inferior residue and mechanism of catalytic performance enhancement [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 3009-3016. |
| [9] | XIE Jingwen, MENG Yifang, YE Wenjie, WANG Hualei, WEI Dongzhi. Semi-rational design to enhance short-chain alcohol dehydrogenases in the synthesis of (S)-1-(4-fluorophenyl)ethanol [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2515-2523. |
| [10] | NIE Hong, XI Yuanbing, GE Panzhu, DING Shi, ZHANG Dengqian. Sustainable aviation fuel production technology and prospects [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2529-2534. |
| [11] | WANG Jia, SUN Danhui, QIAO Yifan, FAN Xiufang, ZHAO Lidong, HE Lei, LU Anhui. Catalytic conversion of ethanol to high value-added chemicals [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2587-2597. |
| [12] | ZHU Junying, RONG Junfeng, ZONG Baoning. Feasibility analysis of Spirulina carbon sequestration while producing of bulk feed protein [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2705-2715. |
| [13] | DING Ajing, ZHOU Qiaoqiao, GU Xuehong. Catalytic gasification of poplar wood in a membrane reactor to produce clean syngas [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2716-2723. |
| [14] | HE Zhiyong. Catalyst evolved by stepwise dehydroxylation/decarbonization method achieves efficient methanol decomposition to produce hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2724-2732. |
| [15] | TANG Zequn, WANG Zishuai, XIAO Gang, SU Haijia. Research advances in catalytic solvolysis to convert plastic waste [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2746-2757. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |