Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2587-2597.DOI: 10.16085/j.issn.1000-6613.2024-1688
• Renewable energy utilization • Previous Articles
WANG Jia1(
), SUN Danhui1, QIAO Yifan1, FAN Xiufang1, ZHAO Lidong1, HE Lei1, LU Anhui1,2(
)
Received:2024-10-21
Revised:2024-12-11
Online:2025-05-20
Published:2025-05-25
Contact:
LU Anhui
王嘉1(
), 孙丹卉1, 乔一凡1, 范秀方1, 赵立东1, 贺雷1, 陆安慧1,2(
)
通讯作者:
陆安慧
作者简介:王嘉(1997—),女,博士研究生,研究方向为能源催化转化。E-mail:jiajiawang@mail.dlut.edu.cn。
基金资助:CLC Number:
WANG Jia, SUN Danhui, QIAO Yifan, FAN Xiufang, ZHAO Lidong, HE Lei, LU Anhui. Catalytic conversion of ethanol to high value-added chemicals[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2587-2597.
王嘉, 孙丹卉, 乔一凡, 范秀方, 赵立东, 贺雷, 陆安慧. 乙醇催化转化制高值化学品研究进展[J]. 化工进展, 2025, 44(5): 2587-2597.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1688
| 1 | CORDON Michael J, ZHANG Junyan, PURDY Stephen C, et al. Selective butene formation in direct ethanol-to-C3+-olefin valorization over Zn-Y/beta and single-atom alloy composite catalysts using in situ-generated hydrogen[J]. ACS Catalysis, 2021, 11(12): 7193-7209. |
| 2 | POKORNY Tomas, VYKOUKAL Vit, MACHAC Petr, et al. Ethanol dehydrogenation over copper-silica catalysts: From sub-nanometer clusters to 15 nm large particles[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(30): 10980-10992. |
| 3 | XU Lulu, ZHAO Rongrong, ZHANG Weiping. One-step high-yield production of renewable propene from bioethanol over composite ZnCeO x oxide and HBeta zeolite with balanced Brönsted/Lewis acidity[J]. Applied Catalysis B: Environmental, 2020, 279: 119389. |
| 4 | WANG Qingnan, WENG Xuefei, ZHOU Baichuan, et al. Direct, selective production of aromatic alcohols from ethanol using a tailored bifunctional cobalt–hydroxyapatite catalyst[J]. ACS Catalysis, 2019, 9(8): 7204-7216. |
| 5 | PAMPARARO Giovanni, GARBARINO Gabriella, RIANI Paola, et al. Ethanol dehydrogenation to acetaldehyde with mesoporous Cu-SiO2 catalysts prepared by aerosol-assisted sol-gel[J]. Chemical Engineering Journal, 2023, 465: 142715. |
| 6 | PATEL Dipna A, GIANNAKAKIS Georgios, YAN George, et al. Mechanistic insights into nonoxidative ethanol dehydrogenation on NiCu single-atom alloys[J]. ACS Catalysis, 2023, 13(7): 4290-4303. |
| 7 | WANG Qingnan, ZHOU Baichuan, WENG Xuefei, et al. Hydroxyapatite nanowires rich in [Ca-O-P] sites for ethanol direct coupling showing high C6-12 alcohol yield[J]. Chemical Communications, 2019, 55(70): 10420-10423. |
| 8 | TANG Fan, LI Wencui, HE Lei, et al. High catalytic activity in upgrading of ethanol to aromatic alcohols over zinc hydroxyapatite[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(45): 16300-16309. |
| 9 | DAGLE Vanessa Lebarbier, COLLINGE Gregory, RAHMAN Mohammed, et al. Single-step conversion of ethanol into n-butene-rich olefins over metal catalysts supported on ZrO2-SiO2 mixed oxides[J]. Applied Catalysis B: Environmental, 2023, 331: 122707. |
| 10 | WANG Peng, HOU Shaowen, TU Pengxiang, et al. Coordinating the interaction of ZnO and ZrO2 for an efficient ethanol-to-butadiene process[J]. Catalysis Science & Technology, 2024, 14(7): 1822-1836. |
| 11 | 周百川. 磷酸盐负载金属催化乙醇转化制高值化学品[D]. 大连: 大连理工大学, 2023. |
| ZHOU Baichuan. Catalytic conversion of ethanol to value-added chemicals over phosphate supported metal catalysts[D]. Dalian: Dalian University of Technology, 2023. | |
| 12 | MORALES M V, ASEDEGBEGA-NIETO E, BACHILLER-BAEZA B, et al. Bioethanol dehydrogenation over copper supported on functionalized graphene materials and a high surface area graphite[J]. Carbon, 2016, 102: 426-436. |
| 13 | WANG Qingnan, SHI Lei, LU Anhui. Highly selective copper catalyst supported on mesoporous carbon for the dehydrogenation of ethanol to acetaldehyde[J]. ChemCatChem, 2015, 7(18): 2846-2852. |
| 14 | WANG Qingnan, SHI Lei, LI Wencui, et al. Cu supported on thin carbon layer-coated porous SiO2 for efficient ethanol dehydrogenation[J]. Catalysis Science & Technology, 2018, 8(2): 472-479. |
| 15 | LI Mengyue, LU Wenduo, HE Lei, et al. Tailoring the surface structure of silicon carbide support for copper catalyzed ethanol dehydrogenation[J]. ChemCatChem, 2019, 11(1): 481-487. |
| 16 | CHENG Shiqun, WENG Xuefei, WANG Qingnan, et al. Defect-rich BN-supported Cu with superior dispersion for ethanol conversion to aldehyde and hydrogen[J]. Chinese Journal of Catalysis, 2022, 43(4): 1092-1100. |
| 17 | TANG Fan, LI Wencui, WANG Dongqi, et al. Synergistic roles of hexagonal boron nitride-supported Cu0 and Cu+ species in dehydrogenation of ethanol to acetaldehyde: A computational mechanistic study[J]. The Journal of Physical Chemistry C, 2023, 127(23): 11014-11025. |
| 18 | PANG Jifeng, ZHENG Mingyuan, WANG Chan, et al. Hierarchical echinus-like Cu-MFI catalysts for ethanol dehydrogenation[J]. ACS Catalysis, 2020, 10(22): 13624-13629. |
| 19 | LI Xianquan, PANG Jifeng, ZHAO Yujia, et al. Ethanol dehydrogenation to acetaldehyde over a Cu δ +-based Cu-MFI catalyst[J]. Chinese Journal of Catalysis, 2023, 49: 91-101. |
| 20 | SHAN Junjun, LIU Jilei, LI Mengwei, et al. NiCu single atom alloys catalyze the C-H bond activation in the selective non- oxidative ethanol dehydrogenation reaction[J]. Applied Catalysis B: Environmental, 2018, 226: 534-543. |
| 21 | DE WAELE Jolien, GALVITA Vladimir V, POELMAN Hilde, et al. PdZn nanoparticle catalyst formation for ethanol dehydrogenation: Active metal impregnation vs incorporation[J]. Applied Catalysis A: General, 2018, 555: 12-19. |
| 22 | YANG Ji, ZHENG Juan, Chaochao DUN, et al. Unveiling highly sensitive active site in atomically dispersed gold catalysts for enhanced ethanol dehydrogenation[J]. Angewandte Chemie International Edition, 2024(35), 63(35): e202408894. |
| 23 | CHEN Baohui, LU Jiazheng, WU Lianping, et al. Dehydration of bio-ethanol to ethylene over iron exchanged HZSM-5[J]. Chinese Journal of Catalysis, 2016, 37(11): 1941-1948. |
| 24 | HAO Yan, ZHAO Dajie, ZHOU Yang, et al. Hierarchical leaf-like alumina-carbon nanosheets with ammonia water modification for ethanol dehydration to ethylene[J]. Fuel, 2023, 333: 126128. |
| 25 | SALCEDO Agustín, Eduardo POGGIO-FRACCARI, Fernando MARIÑO, et al. Tuning the selectivity of cerium oxide for ethanol dehydration to ethylene[J]. Applied Surface Science, 2022, 599: 153963. |
| 26 | XIA Wei, WANG Xue, LI Shuangshuang, et al. Multiple synergistic roles of Zr modification on ZSM-5 in performant and stable catalyst for ethanol conversion to propene[J]. Energy, 2024, 288: 129910. |
| 27 | BAI Ting, LI Xiaohui, DING Liang, et al. Direct conversion of ethanol to propylene over Zn-modified HBeta zeolite: Influence of zinc precursors[J]. Catalysts, 2024, 14(4): 276. |
| 28 | EPELDE Eva, María IBÁÑEZ, VALECILLOS José, et al. SAPO-18 and SAPO-34 catalysts for propylene production from the oligomerization-cracking of ethylene or 1-butene[J]. Applied Catalysis A: General, 2017, 547: 176-182. |
| 29 | MATHEUS Caio R V, CHAGAS Luciano H, GONZALEZ Guilherme G, et al. Synthesis of propene from ethanol: A mechanistic study[J]. ACS Catalysis, 2018, 8(8): 7667-7678. |
| 30 | ZHANG Junyan, WEGENER Evan C, SAMAD Nohor River, et al. Isolated metal sites in Cu-Zn-Y/beta for direct and selective butene-rich C3+ olefin formation from ethanol[J]. ACS Catalysis, 2021, 11(15): 9885-9897. |
| 31 | CHUNG Sang-Ho, DE MIGUEL Juan Carlos Navarro, LI Teng, et al. Core-shell structured magnesia-silica as a next generation catalyst for one-step ethanol-to-butadiene Lebedev process[J]. Applied Catalysis B: Environment and Energy, 2024, 344: 123628. |
| 32 | HRADSKY Dalibor, MACHAC Petr, SKODA David, et al. Catalytic performance of micro-mesoporous zirconosilicates prepared by non-hydrolytic sol-gel in ethanol-acetaldehyde conversion to butadiene and related reactions[J]. Applied Catalysis A: General, 2023, 652: 119037. |
| 33 | CHUNG Sang-Ho, ANGELICI Carlo, HINTERDING Stijn O M, et al. Role of magnesium silicates in wet-kneaded silica-magnesia catalysts for the Lebedev ethanol-to-butadiene process[J]. ACS Catalysis, 2016, 6(6): 4034-4045. |
| 34 | CHUNG Sang-Ho, LI Teng, SHOINKHOROVA Tuiana, et al. Origin of active sites on silica-magnesia catalysts and control of reactive environment in the one-step ethanol-to-butadiene process[J]. Nature Catalysis, 2023, 6: 363-376. |
| 35 | YANG Yishan, GUO Xuan, PAN Yang, et al. Direct SVUV-PIMS identification of unstable oxygenated intermediates in ethanol to butadiene reaction[J]. Catalysis Science & Technology, 2022, 12(6): 1746-1750. |
| 36 | MIYAKE Naomi, BREZICKI Gordon, DAVIS Robert J. Cascade reaction of ethanol to butadiene over multifunctional silica-supported Ag and ZrO2 catalysts[J]. ACS Sustainable Chemistry and Engineering, 2022, 10(2): 1020-1035. |
| 37 | WANG Kangzhou, CHEN Chong, GAO Weizhe, et al. Green and rapid synthesis of hierarchical nano-sized pure Si-Beta zeolite supported with Zn and Y for effective synthesis of butadiene from aqueous ethanol[J]. Chemical Engineering Journal, 2024, 479: 147780. |
| 38 | CORDON Michael J, ZHANG Junyan, SAMAD Nohor “River”, et al. Ethanol conversion to C4+ olefins over bimetallic copper- and lanthanum-containing beta zeolite catalysts[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(18): 5702-5707. |
| 39 | PURDY Stephen C, COLLINGE Gregory, ZHANG Junyan, et al. Dynamic copper site redispersion through atom trapping in zeolite defects[J]. Journal of the American Chemical Society, 2024, 146(12): 8280-8297. |
| 40 | ZHOU Baichuan, LI Wencui, WANG Jia, et al. PO4 3- coordinated Co2+ species on yttrium phosphate boosting the valorization of ethanol to butadiene[J]. Chinese Journal of Catalysis, 2024, 56: 166-175. |
| 41 | 杨春,孟中岳. 碱金属沸石上乙醇双分子缩合反应及其机理[J]. 催化学报, 1994, 15(1): 28-33. |
| YANG Chun, MENG Zhongyue. Bimolecular condensation of ethanol on alkali zeolites and its reaction mechanism[J]. Chinese Journal of Catalysis, 1994, 15(1): 28-33. | |
| 42 | YANG Chun, MENG Zhongyue. Bimolecular condensation of ethanol to 1-butanol catalyzed by alkali cation zeolites[J]. Journal of Catalysis, 1993, 142(1): 37-44. |
| 43 | SCALBERT Julien, Frederic THIBAULT-STARZYK, JACQUOT Roland, et al. Ethanol condensation to butanol at high temperatures over a basic heterogeneous catalyst: How relevant is acetaldehyde self-aldolization?[J]. Journal of Catalysis, 2014, 311: 28-32. |
| 44 | Christopher R HO, SHYLESH Sankaranarayanapillai, BELL Alexis T. Mechanism and kinetics of ethanol coupling to butanol over hydroxyapatite[J]. ACS Catalysis, 2016, 6(2): 939-948. |
| 45 | WANG Zhinuo, YIN Ming, PANG Jifeng, et al. Active and stable Cu doped NiMgAlO catalysts for upgrading ethanol to n-butanol[J]. Journal of Energy Chemistry, 2022, 72: 306-317. |
| 46 | MOTEKI Takahiko, FLAHERTY David W. Mechanistic insight to C-C bond formation and predictive models for cascade reactions among alcohols on Ca- and Sr-hydroxyapatites[J]. ACS Catalysis, 2016, 6(7): 4170-4183. |
| 47 | EAGAN Nathaniel M, LANCI Michael P, HUBER George W. Kinetic modeling of alcohol oligomerization over calcium hydroxyapatite[J]. ACS Catalysis, 2020, 10(5): 2978-2989. |
| 48 | GU Juwen, GONG Wanbing, ZHANG Qian, et al. Enabling direct-growth route for highly efficient ethanol upgrading to long-chain alcohols in aqueous phase[J]. Nature Communications, 2023, 14(1): 7935. |
| 49 | ZHANG Jian, SHI Kai, AN Zhe, et al. Acid-base promoted dehydrogenation coupling of ethanol on supported Ag particles[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3342-3350. |
| 50 | YUAN Bowen, ZHANG Jian, AN Zhe, et al. Atomic Ru catalysis for ethanol coupling to C4+ alcohols[J]. Applied Catalysis B: Environmental, 2022, 309: 121271. |
| 51 | ZHANG Jian, AN Zhe, ZHU Yanru, et al. Ni0/Ni δ + synergistic catalysis on a nanosized Ni surface for simultaneous formation of C-C and C-N bonds[J]. ACS Catalysis, 2019, 9(12): 11438-11446. |
| 52 | PANG Jifeng, ZHENG Mingyuan, HE Lei, et al. Upgrading ethanol to n-butanol over highly dispersed Ni-MgAlO catalysts[J]. Journal of Catalysis, 2016, 344: 184-193. |
| 53 | Wenlu LYU, HE Lei, LI Wencui, et al. Atomically dispersed Co2+ on MgAlO x boosting C4-10 alcohols selectivity of ethanol valorization[J]. Green Chemistry, 2023, 25(7): 2653-2662. |
| 54 | HANSPAL Sabra, YOUNG Zachary D, Tyler PRILLAMAN J, et al. Influence of surface acid and base sites on the Guerbet coupling of ethanol to butanol over metal phosphate catalysts[J]. Journal of Catalysis, 2017, 352: 182-190. |
| 55 | Shuhei OGO, ONDA Ayumu, YANAGISAWA Kazumichi. Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts[J]. Applied Catalysis A: General, 2011, 402(1/2): 188-195. |
| 56 | Shuhei OGO, ONDA Ayumu, IWASA Yukina, et al. 1-Butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios[J]. Journal of Catalysis, 2012, 296: 24-30. |
| 57 | Sarah DIALLO-GARCIA, OSMAN Manel BEN, KRAFFT Jean-Marc, et al. Identification of surface basic sites and acid–base pairs of hydroxyapatite[J]. The Journal of Physical Chemistry C, 2014, 118(24): 12744-12757. |
| 58 | TSUCHIDA Takashi, Kubo JUN, YOSHIOKA Tetsuya, et al. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst[J]. Journal of Catalysis, 2008, 259(2): 183-189. |
| 59 | RODRIGUES E G, KELLER T C, MITCHELL S, et al. Hydroxyapatite, an exceptional catalyst for the gas-phase deoxygenation of bio-oil by aldol condensation[J]. Green Chemistry, 2014, 16(12): 4870-4874. |
| 60 | Su Cheun OH, XU Jiayi, TRAN Dat T, et al. Effects of controlled crystalline surface of hydroxyapatite on methane oxidation reactions[J]. ACS Catalysis, 2018, 8(5): 4493-4507. |
| 61 | XUE Machen, YANG Bolun, XIA Chungu, et al. Upgrading ethanol to higher alcohols via biomass-derived Ni/bio-apatite[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(11): 3466-3476. |
| 62 | XUE Machen, JIN Zerun, YANG Bolun, et al. Boosting higher alcohols selectivity via regulating basicity of Ni/hydroxyapatite in ethanol upgrading[J]. ACS Catalysis, 2024, 14(16): 12654-12663. |
| 63 | ZHOU Baichuan, LI Wencui, Wenlu LYU, et al. Enhancing ethanol coupling to produce higher alcohols by tuning H2 partial pressure over a copper-hydroxyapatite catalyst[J]. ACS Catalysis, 2022, 12(19): 12045-12054. |
| 64 | HE Jinfeng, LI Xiuzhen, KOU Jianyao, et al. Catalytic upgrading of ethanol to higher alcohols over nickel-modified Cu–La2O3/Al2O3 catalysts[J].Catalysis Science & Technology, 2023, 13(1): 170-177. |
| 65 | JIANG Dahao, WU Xianyuan, MAO Jun, et al. Continuous catalytic upgrading of ethanol to n-butanol over Cu-CeO2/AC catalysts[J]. Chemical Communications, 2016, 52(95): 13749-13752. |
| 66 | TONG Yuqin, ZHOU Jian, HE Yaohui, et al. Structure-activity relationship of Cu species in the ethanol upgrading to n-butanol[J]. ChemistrySelect, 2020, 5(26): 7714-7719. |
| 67 | JIANG Dahao, FANG Geqian, TONG Yuqin, et al. Multifunctional Pd@UiO-66 catalysts for continuous catalytic upgrading of ethanol to n-butanol[J]. ACS Catalysis, 2018, 8(12): 11973-11978. |
| 68 | ZHOU Jian, HE Yaohui, XUE Bing, et al. Benefits of active site proximity in Cu@UiO-66 catalysts for efficient upgrading of ethanol to n-butanol[J]. Sustainable Energy & Fuels, 2021, 5(18): 4628-4636. |
| 69 | JORDISON Tyler L, LIRA Carl T, MILLER Dennis J. Condensed-phase ethanol conversion to higher alcohols[J]. Industrial & Engineering Chemistry Research, 2015, 54(44): 10991-11000. |
| 70 | LU Bing, MA Shuangxiu, LIANG Shipan, et al. Efficient conversion of ethanol to 1-butanol over adjacent acid–base dual sites via enhanced C-H activation[J]. ACS Catalysis, 2023, 13(7): 4866-4872. |
| 71 | LIU Haowei, ZHENG Tao, HUI Tianli, et al. Synthesis of n-butanol from ethanol over Pt-Y/beta catalyst: Synergistic catalysis of yttrium and platinum site[J]. Chemical Engineering Journal, 2024, 481: 148397. |
| 72 | ZHANG Lu, PHAM Tu N, FARIA Jimmy, et al. Improving the selectivity to C4 products in the aldol condensation of acetaldehyde in ethanol over faujasite zeolites[J]. Applied Catalysis A: General, 2015, 504: 119-129. |
| 73 | ZHANG Lu, PHAM Tu N, FARIA Jimmy, et al. Synthesis of C4 and C8 chemicals from ethanol on MgO-incorporated faujasite catalysts with balanced confinement effects and basicity[J]. ChemSusChem, 2016, 9(7): 736-748. |
| 74 | MOTEKI Takahiko, ROWLEY Andrew T, FLAHERTY David W. Self-terminated cascade reactions that produce methylbenzaldehydes from ethanol[J]. ACS Catalysis, 2016, 6(11): 7278-7282. |
| 75 | MOTEKI Takahiko, ROWLEY Andrew T, BREGANTE Daniel T, et al. Formation pathways toward 2- and 4-methylbenzaldehyde via sequential reactions from acetaldehyde over hydroxyapatite catalyst[J]. ChemCatChem, 2017, 9(11): 1921-1929. |
| 76 | LUSARDI Marcella, STRUBLE Thomas, TEIXEIRA Andrew R, et al. Identifying the roles of acid-base sites in formation pathways of tolualdehydes from acetaldehyde over MgO-based catalysts[J]. Catalysis Science & Technology, 2020, 10(2): 536-548. |
| 77 | ZHOU Baichuan, WANG Qingnan, WENG Xuefei, et al. Regulating aromatic alcohols distributions by cofeeding methanol with ethanol over cobalt-hydroxyapatite catalyst[J]. ChemCatChem, 2020, 12(8): 2341-2347. |
| 78 | SUN Danhui, LI Wencui, TANG Fan, et al. Emergence of meta-methylbenzyl alcohol in novel pathway of ethanol with methacrolein catalyzed by hydroxyapatite[J]. Applied Catalysis A: General, 2024, 687: 119946. |
| 79 | GUO Jinqiu, FENG Zongjing, XU Jun, et al. Facile preparation of methyl phenols from ethanol over lamellar Ce(OH)SO4·xH2O[J]. ACS Catalysis, 2021, 11(10): 6162-6174. |
| [1] | WU Mengqin, WANG Jiayao, XU Youqiang, WANG Yu. Progress in cascade conversion of CO2 to single cell protein through chemical and biological catalysis [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2429-2440. |
| [2] | WANG Yuanyuan, ZHANG Chong, HAN Shuangyan, XING Xinhui. Research progress on bioproduction of recombinant proteins by Pichia pastoris utilizing methanol [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2441-2450. |
| [3] | YAO Lu, MA Zengxin, ZHANG Cong, YANG Song, XING Xinhui. Recent advances in strengthening Methylobacterium chassis for the utilization of methanol from industrial and plant sources [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2451-2462. |
| [4] | XIE Jingwen, MENG Yifang, YE Wenjie, WANG Hualei, WEI Dongzhi. Semi-rational design to enhance short-chain alcohol dehydrogenases in the synthesis of (S)-1-(4-fluorophenyl)ethanol [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2515-2523. |
| [5] | ZHONG Jiawei, TAN Tao, XIE Jun, CHEN Yong. Technologies for high value-added valorization of biomass energy [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2524-2528. |
| [6] | WANG Shuizhong, SONG Guoyong. Selective hydrogenolysis of lignin into functional monophenols and their high-value utilization [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2535-2540. |
| [7] | CHEN Yanjun, DAI Jie, SHAN Junqiang, ZHANG Sixin, JI Lei, ZHU Chenjie, YING Hanjie. Research progress and development trends of cellulosic ethanol in China [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2541-2562. |
| [8] | WEI Zhiqiang, SUN Lili. Current status and challenges of ethanol production technology from industrial carbon-rich gas fermentation [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2563-2576. |
| [9] | GAO Jiangang, JIANG Yapeng, BAO Baoqing, WANG Shuqi, CUI Shuming. Green methanol and green ammonia synthesis by green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1987-1997. |
| [10] | SONG Kunli, XIAO Lei, MA Dandan, XIAO Peng, YANG Shasha, SHI Jianwen. A review of ammonia selective denitrification catalysts at ultra-low temperature [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2028-2035. |
| [11] | ZHANG Pei, GAO Lining, DING Siqing, LI Li, ZHU Xiruo, HE Rui. Preparation of g-C3N4/TiO2 heterojunction catalyst and its photocatalytic NO degradation performance [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2045-2056. |
| [12] | ZHANG Xinyu, TAO Mengying, YU Xiaoting, ZHAO Zhongxing, ZHAO Zhenxia. Laccase immobilized on mesoporous metal-organic framework and its performance of reactive brilliant blue KN-R degradation [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1758-1767. |
| [13] | ZHU Guoyu, GE Qi, FU Mingli. Durability testing and life prediction of methanol reforming catalysts for hydrogen production [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1338-1346. |
| [14] | ZUO Ji, LUO Li, XIE Yongkai, CHEN Wenyao, QIAN Gang, ZHOU Xinggui, DUAN Xuezhi. Effect of Cu catalyst particle size on methanol nonoxidative dehydrogenation to formaldehyde [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1347-1354. |
| [15] | MA Xiaoyu, ZHANG Yan, ZHOU Awu, LI Hanbing, YANG Feihua, LI Jianrong. Research progress on preparation and photocatalytic performance of MOF-on-MOF heterojunctions [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1417-1431. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |