Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (3): 1368-1377.DOI: 10.16085/j.issn.1000-6613.2024-0389
• Industrial catalysis • Previous Articles Next Articles
CHEN Yuhang(
), LI Qiaoyan, LIANG Meisheng(
), SONG Tianyuan, WANG Yue, LI Simeng, ZHOU Yuxuan
Received:2024-03-08
Revised:2024-05-02
Online:2025-04-16
Published:2025-03-25
Contact:
LIANG Meisheng
陈宇航(
), 李巧艳, 梁美生(
), 宋天远, 汪玥, 李思萌, 周宇璇
通讯作者:
梁美生
作者简介:陈宇航(1999—),男,硕士研究生,研究方向为大气污染控制。E-mail:2249033886@qq.com。
基金资助:CLC Number:
CHEN Yuhang, LI Qiaoyan, LIANG Meisheng, SONG Tianyuan, WANG Yue, LI Simeng, ZHOU Yuxuan. Role of the Sn dopant on Cu/CeZrO2/γ-Al2O3 three-way catalyst: Enhancement of low-temperature activity and sulfur resistance[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1368-1377.
陈宇航, 李巧艳, 梁美生, 宋天远, 汪玥, 李思萌, 周宇璇. Sn掺杂Cu/CeZrO2/γ-Al2O3对三效催化(TWC)反应的作用:提高低温活性和抗硫性[J]. 化工进展, 2025, 44(3): 1368-1377.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0389
| 样品 | XRD | ICP-OES(质量分数)/% | ||||
|---|---|---|---|---|---|---|
| 晶胞参数/nm | 晶粒尺寸/nm | Cu | Ce | Zr | Sn | |
| Cu/CeZrO2/γ-Al2O3 | 0.54022 | 73 | 1.02 | 12.24 | 2.14 | — |
| Cu/CeZrSnO2/γ-Al2O3 | 0.53886 | 61 | 1 | 11.02 | 1.88 | 0.98 |
| 样品 | XRD | ICP-OES(质量分数)/% | ||||
|---|---|---|---|---|---|---|
| 晶胞参数/nm | 晶粒尺寸/nm | Cu | Ce | Zr | Sn | |
| Cu/CeZrO2/γ-Al2O3 | 0.54022 | 73 | 1.02 | 12.24 | 2.14 | — |
| Cu/CeZrSnO2/γ-Al2O3 | 0.53886 | 61 | 1 | 11.02 | 1.88 | 0.98 |
| 样品 | 相对含量/% | ||
|---|---|---|---|
| Cu2+/Cu1++Cu2+ | Ce3+/Ce3++Ce4+ | O′/O+O′+O″ | |
| Cu/CeZrO2/γ-Al2O3 | 70.73 | 29.23 | 55.15 |
| Cu/CeZrSnO2/γ-Al2O3 | 78.01 | 30.69 | 63.99 |
| 样品 | 相对含量/% | ||
|---|---|---|---|
| Cu2+/Cu1++Cu2+ | Ce3+/Ce3++Ce4+ | O′/O+O′+O″ | |
| Cu/CeZrO2/γ-Al2O3 | 70.73 | 29.23 | 55.15 |
| Cu/CeZrSnO2/γ-Al2O3 | 78.01 | 30.69 | 63.99 |
| 1 | ROOD Shawn, ESLAVA Salvador, MANIGRASSO Alexis, et al. Recent advances in gasoline three-way catalyst formulation: A review[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(4): 936-949. |
| 2 | ZHAO Han, BIAN Longchun, DU Junchen, et al. Moderating the interaction among Pd, CeO2, and Al2O3 for improved three-way catalysts[J]. Dalton Transactions, 2022, 51(48): 18562-18571. |
| 3 | ZHOU Xuan, HAN Kai, LI Kai, et al. Dual-site single-atom catalysts with high performance for three-way catalysis[J]. Advanced Materials, 2022, 34(20): 2201859. |
| 4 | REN Shouxian, SCHMIEG Steven J, KOCH Calvin K, et al. Investigation of Ag-based low temperature NO x adsorbers[J]. Catalysis Today, 2015, 258: 378-385. |
| 5 | GUO Jiaxiu, SHI Zhonghua, WU Dongdong, et al. Effects of Nd on the properties of CeO2-ZrO2 and catalytic activities of three-way catalysts with low Pt and Rh[J]. Journal of Alloys and Compounds, 2015, 621: 104-115. |
| 6 | WILBURN Monique Shauntá, EPLING William S. Formation and decomposition of sulfite and sulfate species on Pt/Pd catalysts: An SO2 oxidation and sulfur exposure study[J]. ACS Catalysis, 2019, 9(1): 640-648. |
| 7 | VAN EVERBROECK Tim, WU Jianxiong, Daniel ARENAS-ESTEBAN, et al. ZnAl layered double hydroxide based catalysts (with Cu, Mn, Ti) used as noble metal-free three-way catalysts[J]. Applied Clay Science, 2022, 217: 106390. |
| 8 | HIRAKAWA Taiki, SHIMOKAWA Yushi, MIYAHARA Yuma, et al. Activity-composition relationships of Fe-Ni-Cu ternary nanoparticles supported on Al2O3 as three-way catalysts for NO reduction[J]. ACS Applied Nano Materials, 2021, 4(10): 10613-10622. |
| 9 | CHEN Deli, SU Ziang, SI Wenzhe, et al. Boosting CO catalytic oxidation performance via highly dispersed copper atomic clusters: Regulated electron interaction and reaction pathways[J]. Environmental Science & Technology, 2023, 57(7): 2928-2938. |
| 10 | JIA Chunmiao, GAO Jiajian, HUANG Kuniadi Wandy, et al. Selective catalytic reduction of NO x in marine engine exhaust gas over supported transition metal oxide catalysts[J]. Chemical Engineering Journal, 2021, 414: 128794. |
| 11 | 张会, 王星雨, 赵钰明, 等. 铈锆基稀土催化剂在汽车尾气净化用三效催化剂中的研究进展[J]. 当代化工, 2022, 51(9): 2157-2161. |
| ZHANG Hui, WANG Xingyu, ZHAO Yuming, et al. Research progress of cerium zirconium based rare earth catalyst in three-way catalyst for automobile exhaust purification[J]. Contemporary Chemical Industry, 2022, 51(9): 2157-2161. | |
| 12 | 金向亮, 孟明. Ce x Zr1- x O2固溶体三效催化剂研究进展[J]. 化学工业与工程, 2007, 24(4): 345-349. |
| JIN Xiangliang, MENG Ming. Advances in three-way catalysts containing Ce x Zr1- x O2 solid solution[J]. Chemical Industry and Engineering, 2007, 24(4): 345-349. | |
| 13 | LI Guangfeng, WANG Qiuyan, ZHAO Bo, et al. A new insight into the role of transition metals doping with CeO2-ZrO2 and its application in Pd-only three-way catalysts for automotive emission control[J]. Fuel, 2012, 92(1): 360-368. |
| 14 | MESILOV Vitaly, DAHLIN Sandra, BERGMAN Susanna L, et al. Regeneration of sulfur-poisoned Cu-SSZ-13 catalysts: Copper speciation and catalytic performance evaluation[J]. Applied Catalysis B: Environmental, 2021, 299: 120626. |
| 15 | HE Jiebing, DENG Jiang, ZHANG Jin, et al. SO2-resistant NO x reduction over Cu-SAPO-34 catalysts via creating sulfur-phobic Cu sites[J]. Catalysis Science & Technology, 2023, 13(8): 2480-2492. |
| 16 | HAMMERSHØI Peter S, VENNESTRØM Peter N R, FALSIG Hanne, et al. Importance of the Cu oxidation state for the SO2 - poisoning of a Cu-SAPO-34 catalyst in the NH3-SCR reaction[J]. Applied Catalysis B: Environmental, 2018, 236: 377-383. |
| 17 | TAN Wei, WANG Jiaming, LI Lulu, et al. Gas phase sulfation of ceria-zirconia solid solutions for generating highly efficient and SO2 resistant NH3-SCR catalysts for NO removal[J]. Journal of Hazardous Materials, 2020, 388: 121729. |
| 18 | CHANG Huazhen, LI Junhua, CHEN Xiaoyin, et al. Effect of Sn on MnO x -CeO2 catalyst for SCR of NO x by ammonia: Enhancement of activity and remarkable resistance to SO2 [J]. Catalysis Communications, 2012, 27: 54-57. |
| 19 | YU Ming’e, LI Caiting, ZENG Guangming, et al. The selective catalytic reduction of NO x with NH3 over a novel Ce-Sn-Ti mixed oxides catalyst: Promotional effect of SnO2 [J]. Applied Surface Science, 2015, 342: 174-182. |
| 20 | LI Xiaoliang, LI Yonghong, DENG Shanshan, et al. A Ce-Sn-O x catalyst for the selective catalytic reduction of NO x with NH3 [J]. Catalysis Communications, 2013, 40: 47-50. |
| 21 | DONG Qiang, YIN Shu, GUO Chongshen, et al. Ce0.5Zr0.4Sn0.1O2/Al2O3 catalysts with enhanced oxygen storage capacity and high CO oxidation activity[J]. Catalysis Science & Technology, 2012, 2(12): 2521-2524. |
| 22 | YAO Xiaojiang, CHEN Li, CAO Jun, et al. Morphology and crystal-plane effects of CeO2 on TiO2/CeO2 catalysts during NH3-SCR reaction[J]. Industrial & Engineering Chemistry Research, 2018, 57(37): 12407-12419. |
| 23 | REDDY Benjaram M, LAKSHMANAN Pandian, KHAN Ataullah, et al. Structural characterization of CeO2-ZrO2/TiO2 and V2O5/CeO2-ZrO2/TiO2 mixed oxide catalysts by XRD, Raman spectroscopy, HREM, and other techniques[J]. The Journal of Physical Chemistry B, 2005, 109(5): 1781-1787. |
| 24 | DENG Changshun, QIAN Junning, YU Chuxuan, et al. Influences of doping and thermal stability on the catalytic performance of CuO/Ce20M1O x (M = Zr, Cr, Mn, Fe, Co, Sn) catalysts for NO reduction by CO[J]. RSC Advances, 2016, 6(114): 113630-113647. |
| 25 | ZHANG Hailong, WANG Jianli, ZHANG Yanhua, et al. A study on H2-TPR of Pt/Ce0.27Zr0.73O2 and Pt/Ce0.27Zr0.70La0.03O x for soot oxidation[J]. Applied Surface Science, 2016, 377: 48-55. |
| 26 | CHEN Dingkai, HE Dedong, LU Jichang, et al. Investigation of the role of surface lattice oxygen and bulk lattice oxygen migration of cerium-based oxygen carriers: XPS and designed H2-TPR characterization[J]. Applied Catalysis B: Environmental, 2017, 218: 249-259. |
| 27 | 张彤, 李巧艳, 王小燕, 等. Pr掺杂Ni~(Ce-Zr)O2/Al2O3用于三效催化(TWC)反应: 缺陷性质-活性关系[J]. 中国环境科学, 2023, 43(10): 5157-5169. |
| ZHANG Tong, LI Qiaoyan, WANG Xiaoyan, et al. Pr-doped Ni-(Ce-Zr)O2/Al2O3 for TWC reaction: Defect property-activity relationship[J]. China Environmental Science, 2023, 43(10): 5157-5169. | |
| 28 | ZHENG Yanfei, LIU Qingling, SHAN Cangpeng, et al. Defective ultrafine MnO x nanoparticles confined within a carbon matrix for low-temperature oxidation of volatile organic compounds[J]. Environmental Science & Technology, 2021, 55(8): 5403-5411. |
| 29 | SUDARSANAM Putla, HILLARY Brendan, AMIN Mohamad Hassan, et al. Structure-activity relationships of nanoscale MnO x /CeO2 heterostructured catalysts for selective oxidation of amines under eco-friendly conditions[J]. Applied Catalysis B: Environmental, 2016, 185: 213-224. |
| 30 | YAO Xiaojiang, TANG Changjin, JI Zeyang, et al. Investigation of the physicochemical properties and catalytic activities of Ce0.67M0.33O2 (M = Zr4+, Ti4+, Sn4+) solid solutions for NO removal by CO[J]. Catalysis Science & Technology, 2013, 3(3): 688-698. |
| 31 | AUXILIA Francis Malar, ISHIHARA Shinsuke, MANDAL Saikat, et al. Low-temperature remediation of NO catalyzed by interleaved CuO nanoplates[J]. Advanced Materials, 2014, 26(26): 4481-4485. |
| 32 | HE Hong, DAI Hongxing, Chak Tong AU, et al. Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions[J]. Catalysis Today, 2004, 90(3/4): 245-254. |
| 33 | ZHANG Zhen, LIU Jing, WANG Zhen, et al. Bimetallic Fe-Cu-based metal-organic frameworks as efficient adsorbents for gaseous elemental mercury removal[J]. Industrial & Engineering Chemistry Research, 2021, 60(1): 781-789. |
| 34 | ZENG Yiqing, Kok-Giap HAW, WANG Zhigang, et al. Double redox process to synthesize CuO-CeO2 catalysts with strong Cu-Ce interaction for efficient toluene oxidation[J]. Journal of Hazardous Materials, 2021, 404: 124088. |
| 35 | SONG Binghong, LI Caiting, DU Xueyu, et al. Superior performance of Cu-Ce binary oxides for toluene catalytic oxidation: Cu-Ce synergistic effect and reaction pathways[J]. Fuel, 2021, 306: 121654. |
| 36 | SIERRA-PEREIRA Cristiane Alves, URQUIETA-GONZÁLEZ Ernesto Antonio. Reduction of NO with CO on CuO or Fe2O3 catalysts supported on TiO2 in the presence of O2, SO2 and water steam[J]. Fuel, 2014, 118: 137-147. |
| 37 | DEVAIAH Damma, TSUZUKI Takuya, BONINGARI Thirupathi, et al. Ce0.80M0.12Sn0.08O2- δ (M = Hf, Zr, Pr, and La) ternary oxide solid solutions with superior properties for CO oxidation[J]. RSC Advances, 2015, 5(38): 30275-30285. |
| 38 | DENG Changshun, QIAN Xiaofeng, LU Minping, et al. CO oxidation and NO reduction by CO over Sn4+ doped CeO2 catalysts: Determination of active sites as well as commonness and differences[J]. Applied Catalysis B: Environment and Energy, 2023, 333: 122791. |
| 39 | 宋天远, 梁美生, 李巧艳, 等. Sn调变Cu电子结构改善Cu/CeZrO2抗硫性能[J]. 太原理工大学学报, 2023, 54(1): 39-47. |
| SONG Tianyuan, LIANG Meisheng, LI Qiaoyan, et al. Sn-doping modulated Cu electronic structure to improves the sulfur resistance of Cu/CeZrO2 [J]. Journal of Taiyuan University of Technology, 2023, 54(1): 39-47. | |
| 40 | KANG Lin, HAN Lupeng, WANG Penglu, et al. SO2-tolerant NO x reduction by marvelously suppressing SO2 adsorption over Fe δ Ce1- δ VO4 catalysts[J]. Environmental Science & Technology, 2020, 54(21): 14066-14075. |
| 41 | ZHANG Xiaopeng, LI Zhuofeng, ZHAO Jijun, et al. Mechanism of Ce promoting SO2 resistance of MnO x /γ-Al2O3: An experimental and DFT study[J]. Korean Journal of Chemical Engineering, 2017, 34(7): 2065-2071. |
| 42 | MONTINI Tiziano, MELCHIONNA Michele, MONAI Matteo, et al. Fundamentals and catalytic applications of CeO2-based materials[J]. Chemical Reviews, 2016, 116(10): 5987-6041. |
| [1] | TAO Jinquan, JIA Yijing, BAI Tianyu, YAO Rongpeng, HUANG Wenbin, CUI Yan, ZHOU Yasong, WEI Qiang. Synthesis and catalytic MTP performance of Silicalite-1 zeolite with low cost [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1550-1558. |
| [2] | ZHANG Yi, YAO Qiuxiang, SUN Ming. Adsorption performance of natural clinoptilolite based analcime and its modifications on Pb2+ [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1726-1738. |
| [3] | ZHANG Xin’er, PEI Liujun, ZHOU Yudie, JIN Kaili, WANG Jiping. Progress of TiO2-based photocatalysts for hydrogen production by water splitting with solar energy [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1298-1308. |
| [4] | LIU Junjie, WU Jianmin, SUN Qiwen, WANG Jiancheng, SUN Yan. Research of metallocene catalysts for linear α-olefins polymerization to obtain high molecular weight products [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1309-1322. |
| [5] | ZHU Guoyu, GE Qi, FU Mingli. Durability testing and life prediction of methanol reforming catalysts for hydrogen production [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1338-1346. |
| [6] | ZUO Ji, LUO Li, XIE Yongkai, CHEN Wenyao, QIAN Gang, ZHOU Xinggui, DUAN Xuezhi. Effect of Cu catalyst particle size on methanol nonoxidative dehydrogenation to formaldehyde [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1347-1354. |
| [7] | BI Wentao, WANG Xuelin, QU Wei, WANG Congxin, TIAN Zhijian. Effect of Mg-modification on the catalytic performance of Pt/ZSM-22 with low Pt content in n-alkane hydroisomerization [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1355-1367. |
| [8] | ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, CHENG Meng, ZHANG Kui, LYU Yijun, MEN Zhuowu. Advances in Fe-based catalysts for conversion of syngas/CO2 to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1323-1337. |
| [9] | SU Liangjian, XIAO Junyan, ZHANG Chunguang, ZHAO Yuansheng, YANG Xu. Deep regeneration of fixed-bed HDCCR catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 728-734. |
| [10] | LI Zhuoyu, YU Meiqi, CHEN Xiaoyan, HU Ruohui, WANG Qinghong, CHEN Chunmao, ZHAN Yali. Effects and mechanism on the removal of nitrobenzene from water by adsorption of refining waste catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1076-1087. |
| [11] | LI Xiaoqian, REN Shenyong, LIU Lu, YANG Chi, SHEN Baojian, XU Chunming. Modulation of NiMo-based catalysts by Fe species and its effect on catalytic hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 867-878. |
| [12] | ZHANG Huanling, MA Huixia, ZHOU Feng, ZHAO Chenghao, ZHU Xiaolin, WANG Guowei, LI Chunyi. Effect of introduced In species on propane dehydrogenation over Ge/SiO2 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 879-886. |
| [13] | LIU Fazhi, ZHANG Pengwei, LIU Tao, XIE Yuxian, HE Jianle, SU Sheng, XU Jun, XIANG Jun. Mechanism of anti-CO poisoning of Sb-modified vanadium-titanium SCR denitrification catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1129-1137. |
| [14] | ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, FENG Bo, JIANG Zhihui, LYU Yijun, MEN Zhuowu. Advances in Co-based catalysts for syngas to higher alcohol [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 773-787. |
| [15] | JIA Yijing, TAO Jinquan, HUANG Wenbin, LIU Haoran, LI Rongrong, YAO Rongpeng, BAI Tianyu, WEI Qiang, ZHOU Yasong. Research progress on iron-based catalysts for CO2 hydrogenation to low carbon olefins [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 820-833. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |