Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (12): 6680-6691.DOI: 10.16085/j.issn.1000-6613.2023-2085
• Energy processes and technology • Previous Articles
DAI Hua(), WU Jun, ZHOU Zhanghua(
), ZHANG Bin
Received:
2023-11-28
Revised:
2024-02-18
Online:
2025-01-11
Published:
2024-12-15
Contact:
ZHOU Zhanghua
通讯作者:
周章华
作者简介:
代化(1979—),男,博士,研究员,研究方向为锂电池。E-mail:daihuawangss@163.com。
CLC Number:
DAI Hua, WU Jun, ZHOU Zhanghua, ZHANG Bin. Research progress of lithium primary batteries with high energy density and high power characteristics[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6680-6691.
代化, 吴军, 周章华, 张斌. 高能量密度及高功率特性锂一次电池研究进展[J]. 化工进展, 2024, 43(12): 6680-6691.
状态 | 正极物质 | 工作电压/V | 理论克容量/mA·h·g-1 | 实际克容量/mA·h·g-1 | 实际能量密度/W·h·kg-1 | 参考文献 |
---|---|---|---|---|---|---|
液态 | SOCl2 | 3.30 | 450 | 200 | 650 | [ |
SO2 | 2.80 | 420 | 418 | 1170 | [ | |
固态 | MnO2 | 2.80 | 359 | 308 | 1005 | [ |
CF x | 2.56 | 865 | 865 | 1872 | [ | |
S | 2.10 | 1675 | 1300 | 1107 | [ | |
SVO | 3.3 | 315 | 280 | 700 | [ | |
Cr3O21 | 3.3 | 642 | 419 | 1210 | [ | |
有机物 | 2.62 | 1798 | 1321 | 3400 | [ |
状态 | 正极物质 | 工作电压/V | 理论克容量/mA·h·g-1 | 实际克容量/mA·h·g-1 | 实际能量密度/W·h·kg-1 | 参考文献 |
---|---|---|---|---|---|---|
液态 | SOCl2 | 3.30 | 450 | 200 | 650 | [ |
SO2 | 2.80 | 420 | 418 | 1170 | [ | |
固态 | MnO2 | 2.80 | 359 | 308 | 1005 | [ |
CF x | 2.56 | 865 | 865 | 1872 | [ | |
S | 2.10 | 1675 | 1300 | 1107 | [ | |
SVO | 3.3 | 315 | 280 | 700 | [ | |
Cr3O21 | 3.3 | 642 | 419 | 1210 | [ | |
有机物 | 2.62 | 1798 | 1321 | 3400 | [ |
参数 | 二氧化锰 | 氟化碳 | 钴酸锂 |
---|---|---|---|
成本/CNY·kg-1 | 20~40 | 3500~7000 | 150~250 |
晶体结构 | γ+β-MnO2两种混合晶型的一维隧道结构 | 共价键型石墨层间化合物 | 层状结构 |
理论比容量/mA·h·g-1 | 359 | 865 | 274 |
实际比容量/mA·h·g-1 | 308 | 865 | 135~150 |
电子电导率/S·cm-1 | 10-5~10-6 | 约10-9 | 约10-4 |
参考文献 | [ | [ | [ |
参数 | 二氧化锰 | 氟化碳 | 钴酸锂 |
---|---|---|---|
成本/CNY·kg-1 | 20~40 | 3500~7000 | 150~250 |
晶体结构 | γ+β-MnO2两种混合晶型的一维隧道结构 | 共价键型石墨层间化合物 | 层状结构 |
理论比容量/mA·h·g-1 | 359 | 865 | 274 |
实际比容量/mA·h·g-1 | 308 | 865 | 135~150 |
电子电导率/S·cm-1 | 10-5~10-6 | 约10-9 | 约10-4 |
参考文献 | [ | [ | [ |
有机材料 | 化学结构式 | 工作电压/V | 克容量/mA·h·g-1 | 能量密度/W·h·kg-1 | 参考文献 |
---|---|---|---|---|---|
AQ | ![]() | 2.40 | 313 | 1300 | [ |
IFDO | ![]() | 2.13 | 652 | 1392 | [ |
1,5-DNN | ![]() | 2.45 | 1338 | 3273 | [ |
1,5-DNQ | ![]() | 2.62 | 1321 | 3400 | [ |
有机材料 | 化学结构式 | 工作电压/V | 克容量/mA·h·g-1 | 能量密度/W·h·kg-1 | 参考文献 |
---|---|---|---|---|---|
AQ | ![]() | 2.40 | 313 | 1300 | [ |
IFDO | ![]() | 2.13 | 652 | 1392 | [ |
1,5-DNN | ![]() | 2.45 | 1338 | 3273 | [ |
1,5-DNQ | ![]() | 2.62 | 1321 | 3400 | [ |
1 | WANG Yuxing, LIU Bo, LI Qiuyan, et al. Lithium and lithium ion batteries for applications in microelectronic devices: A review[J]. Journal of Power Sources, 2015, 286: 330-345. |
2 | PATHAK Anil D, SAHA Shalakha, BHARTI Vikram Kishore, et al. A review on battery technology for space application[J]. Journal of Energy Storage, 2023, 61: 106792. |
3 | 代化, 张斌, 徐言哲. UUV动力电池发展现状与趋势[J]. 舰船科学技术, 2020, 42(23): 155-158. |
DAI Hua, ZHANG Bin, XU Yanzhe. Current status and development trend of power batteries for UUV[J]. Ship Science and Technology, 2020, 42(23): 155-158. | |
4 | 何巍巍, 叶聪, 张祥功, 等. 锂一次应急电池在全海深载人潜水器中的应用分析[J]. 舰船科学技术, 2022, 44(16): 180-184. |
HE Weiwei, YE Cong, ZHANG Xianggong, et al. Application analysis of lithium primary emergency battery in full ocean deep manned submersible[J]. Ship Science and Technology, 2022, 44(16): 180-184. | |
5 | XUN Haiyan, CHEN Zifeng, LIU Yuansheng, et al. Organic cathode with dual-type multielectron reaction centers for high-energy-density lithium primary batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(24): 29064-29071. |
6 | CHEN Lei, LI Yanyan, LIU Chao, et al. Fluorinated saccharide-derived hard carbon as a cathode material of lithium primary batteries: Effect of the polymerization degree of the starting saccharide[J]. RSC Advances, 2023, 13(22): 14797-14807. |
7 | CHENG J J, LIU L F, OU S W, et al. Sulfur/Cu x S hybrid material for Li/S primary battery with improved discharge capacity[J]. Materials Chemistry and Physics, 2019, 224: 384-388. |
8 | 唐致远, 邱瑞玲, 刘东兴, 等. 锂一次电池正极材料钒酸银的研究进展[J]. 化工进展, 2008, 27(11): 1772-1776. |
TANG Zhiyuan, QIU Ruiling, LIU Dongxing, et al. Research progress of silver vanadium oxide cathode material in lithium primary batteries[J]. Chemical Industry and Engineering Progress, 2008, 27(11): 1772-1776. | |
9 | 滕久康, 吴宁宁, 王畅, 等. 高容量铬氧化物Cr8O21锂一次电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(11): 3455-3462. |
TENG Jiukang, WU Ningning, WANG Chang, et al. Preparation and electrochemical performance of high capacity chromium oxide Cr8O21 cathode materials for lithium primary batteries[J]. Energy Storage Science and Technology, 2022, 11(11): 3455-3462. | |
10 | 王舒钰, 庞洪昌, 宁桂玲. 碳量子点@MnO2复合材料的制备及其柔性超级电容器的性能[J]. 工程塑料应用, 2019, 47(6): 102-106. |
WANG Shuyu, PANG Hongchang, NING Guiling. Preparation of carbon quantum dots@MnO2 composite and its properties of flexible supercapacitors[J]. Engineering Plastics Application, 2019, 47(6): 102-106. | |
11 | 张红梅, 甘潦, 王开琼, 等. 纳米Ag改性方式对锂氟化碳电池性能的影响[J]. 电源技术, 2023, 47(9): 1164-1168. |
ZHANG Hongmei, GAN Liao, WANG Kaiqiong, et al. Effect of nano-Ag modification methods on performance of lithium fluoride carbon batteries[J]. Chinese Journal of Power Sources, 2023, 47(9): 1164-1168. | |
12 | 唐乾昌. LiCoO2电极的包覆改性及其薄膜电极的制备研究[D]. 贵阳: 贵州大学, 2021. |
TANG Qianchang. Coating modification and thin film preparation of the LiCoO2 electrode[D]. Guiyang: Guizhou University, 2021. | |
13 | 陈雨晴, 张洪章, 于滢, 等. 锂硫一次电池的研究现状及展望[J]. 储能科学与技术, 2017, 6(3): 529-533. |
CHEN Yuqing, ZHANG Hongzhang, YU Ying, et al. The R&D status and prospects for primary lithium sulfur batteries[J]. Energy Storage Science and Technology, 2017, 6(3): 529-533. | |
14 | 卓华兰, 袁中直, 刘金成. 高比能量锂/硫原电池的研制[J]. 电源技术, 2010, 34(12): 1242-1245. |
ZHUO Hualan, YUAN Zhongzhi, LIU Jincheng. Preparation of lithium/sulfur batteries with high specific energy[J]. Chinese Journal of Power Sources, 2010, 34(12): 1242-1245. | |
15 | MA Yiwen, ZHANG Hongzhang, WU Baoshan, et al. Lithium sulfur primary battery with super high energy density: Based on the cauliflower-like structured C/S cathode[J]. Scientific Reports, 2015, 5: 14949-14958. |
16 | SUN Pengfei, BAI Panxing, CHEN Zifeng, et al. A lithium-organic primary battery[J]. Small, 2020, 16(3): 1906462. |
17 | CHEN Zifeng, SUN Pengfei, BAI Panxing, et al. A poorly soluble organic electrode material for high energy density lithium primary batteries based on a multi-electron reduction[J]. Chemical Communications, 2021, 57(82): 10791-10794. |
18 | CHEN Zifeng, SU Hai, SUN Pengfei, et al. A nitroaromatic cathode with an ultrahigh energy density based on six-electron reaction per nitro group for lithium batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(6): e2116775119. |
19 | DOSE Wesley M, DONNE Scott W. Optimizing Li/MnO2 batteries: Relating manganese dioxide properties and electrochemical performance[J]. Journal of Power Sources, 2013, 221: 261-265. |
20 | DOSE Wesley M, DONNE Scott W. Optimising heat treatment environment and atmosphere of electrolytic manganese dioxide for primary Li/MnO2 batteries[J]. Journal of Power Sources, 2014, 247: 852-857. |
21 | 王子佳, 王兴贺, 牛长东, 等. 高功率储备式一次锂锰电池正极的研究[J]. 电源技术, 2015, 39(5): 913-916. |
WANG Zijia, WANG Xinghe, NIU Changdong, et al. Research of cathode for high capacity reserve Li/MnO2 batteries[J]. Chinese Journal of Power Sources, 2015, 39(5): 913-916. | |
22 | LEE Byoung-Sun, WU Zhaohui, PETROVA Victoria, et al. Analysis of rate-limiting factors in thick electrodes for electric vehicle applications[J]. Journal of the Electrochemical Society, 2018, 165(3): A525-A533. |
23 | 张晶. 高性能锂-二氧化锰电池正极的研究[D]. 天津: 天津大学, 2007. |
ZHANG Jin. A study on the positive electrode of high performance lithium manganese dioxide cell[D]. Tianjin: Tianjin University, 2007. | |
24 | 王铭, 周川冀越, 高剑. 锂-二氧化锰一次电池脉冲放电性能优化研究[J]. 电源技术, 2021, 45(9): 1175-1177. |
WANG Ming, ZHOU Chuanjiyue, GAO Jian. Optimization of pulse discharging performance of Li-MnO2 primary battery[J]. Chinese Journal of Power Sources, 2021, 45(9): 1175-1177. | |
25 | 刘芬, 刘良成, 冯姗, 等. 锂/二氧化锰电池用高电导率正极[J]. 电池, 2019, 49(5): 420-423. |
LIU Fen, LIU Liangcheng, FENG Shan, et al. High electrical conductivity positive electrode for Li/MnO2 battery[J]. Battery Bimonthly, 2019, 49(5): 420-423. | |
26 | Seongmin HA, Chaehun LIM, LEE Young-Seak. Fluorination methods and the properties of fluorinated carbon materials for use as lithium primary battery cathode materials[J]. Journal of Industrial and Engineering Chemistry, 2022, 111: 1-17. |
27 | WANG Da, WANG Guoxin, ZHANG Maomao, et al. Composite cathode materials for next-generation lithium fluorinated carbon primary batteries[J]. Journal of Power Sources, 2022, 541: 231716. |
28 | GAO Meiting, CAI Danmin, LUO Sifei, et al. Research progress in fluorinated carbon sources and the discharge mechanism for Li/CF x primary batteries[J]. Journal of Materials Chemistry A, 2023, 11(31): 16519-16538. |
29 | ZHANG Shixue, KONG Lingchen, LI Yu, et al. Fundamentals of Li/CF x battery design and application[J]. Energy & Environmental Science, 2023, 16(5): 1907-1942. |
30 | FANG Zhong, PENG Yu, ZHOU Xing, et al. Fluorinated carbon materials and the applications in energy storage systems[J]. ACS Applied Energy Materials, 2022, 5(4): 3966-3978. |
31 | FENG Wei. Status and development trends for fluorinated carbon in China[J]. New Carbon Materials, 2023, 38(1): 130-142. |
32 | HOU Jia, YANG Xinxia, FU Xingguang, et al. Highly oriented fluorinated carbon nanotube arrays for high specific capacity lithium primary battery[J]. Journal of Alloys and Compounds, 2022, 923: 166452. |
33 | AHMAD Yasser, DUBOIS Marc, GUERIN Katia, et al. High energy density of primary lithium batteries working with sub-fluorinated few walled carbon nanotubes cathode[J]. Journal of Alloys and Compounds, 2017, 726: 852-859. |
34 | YAZAMI R, HAMWI A, GUÉRIN K, et al. Fluorinated carbon nanofibres for high energy and high power densities primary lithium batteries[J]. Electrochemistry Communications, 2007, 9(7): 1850-1855. |
35 | YANG Xiaoxia, ZHANG Guanjun, BAI Baosheng, et al. Fluorinated graphite nanosheets for ultrahigh-capacity lithium primary batteries[J]. Rare Metals, 2021, 40(7): 1708-1718. |
36 | LUO Zhenya, WANG Xiao, CHEN Duanwei, et al. Ultrafast Li/fluorinated graphene primary batteries with high energy density and power density[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18809-18820. |
37 | JIANG Shengbo, PING Huang, LU Jiachun, et al. The electrochemical performance of fluorinated ketjenblack as a cathode for lithium/fluorinated carbon batteries[J]. RSC Advances, 2021, 11: 25461-25470. |
38 | ZHU Ling, PAN Yong, LI Lei, et al. Preparation of CF x @C microcapsules as a high-rate capability cathode of lithium primary battery[J]. International Journal of Electrochemical Science, 2016, 11(1): 14-22. |
39 | GROULT H, JULIEN C M, BAHLOUL A, et al. Improvements of the electrochemical features of graphite fluorides in primary lithium battery by electrodeposition of polypyrrole[J]. Electrochemistry Communications, 2011, 13(10): 1074-1076. |
40 | YIN Xiaodong, LI Yu, FENG Yiyu, et al. Polythiophene/graphite fluoride composites cathode for high power and energy densities lithium primary batteries[J]. Synthetic Metals, 2016, 220: 560-566. |
41 | GAO Jingchi, HE Feng, HUANG Changshui, et al. High energy density primary cathode with a mixed electron/ion interface[J]. Materials Horizons, 2022, 9(11): 2893-2900. |
42 | LI Weiyu, KONG Lingchen, HU Yuanhang, et al. Electroplated silver-modified CF x cathode for lithium primary batteries with high rate capability[J]. ACS Applied Energy Materials, 2023, 6(11): 6132-6140. |
43 | ZHANG Lingxiao, ZHANG Lijuan, XI Lidege. Facile fabrication of CF x -Pt composites as a high-performance cathode for primary lithium batteries[J]. International Journal of Electrochemical Science, 2019, 14(6): 5738-5747. |
44 | 张伶潇, 张丽娟, 希利德格, 等. CF x -Ru复合阴极材料的制备及在锂一次电池中的应用[J]. 无机化学学报, 2020, 36(1): 148-158. |
ZHANG Lingxiao, ZHANG Lijuan, XI Lidege, et al. CF x -Ru composite cathode for lithium primary battery with significantly improved electrochemical performance[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(1): 148-158. | |
45 | ZHANG Lingxiao, ZHANG Lijuan, XI Lidege, et al. CF x -Cu composites with excellent high rate performances as cathode materials for lithium primary batteries[J]. Rare Metal Materials and Engineering, 2020, 49(7): 2256-2261. |
46 | NAGATA Mikito, YI Joice, TOMCSI Michael, et al. Performance of lithium primary cell using a hybrid positive electrode of LiV3O8 and CF x [J]. ECS Transactions, 2011, 33(39): 223. |
47 | SIDERIS Paul J, Rowena YEW, NIEVES Ian, et al. Charge transfer in Li/CF x -silver vanadium oxide hybrid cathode batteries revealed by solid state 7Li and 19F nuclear magnetic resonance spectroscopy[J]. Journal of Power Sources, 2014, 254: 293-297. |
48 | SUN Lidong, PENG Cong, KONG Lingchen, et al. Interface-structure-modulated CuF2/CF x composites for high-performance lithium primary batteries[J]. Energy & Environmental Materials, 2023, 6(2): e12323. |
49 | 张红梅, 李国平, 王庆杰, 等. MnO2掺杂对锂/氟化碳电池性能的影响[J]. 电池, 2017, 47(3): 156-159. |
ZHANG Hongmei, LI Guoping, WANG Qingjie, et al. Effects of MnO2 doping on performance of lithium/fluorinated carbon battery[J]. Battery Bimonthly, 2017, 47(3): 156-159. | |
50 | LI Yu, FENG Wei. The tunable electrochemical performances of carbon fluorides/manganese dioxide hybrid cathodes by their arrangements[J]. Journal of Power Sources, 2015, 274: 1292-1299. |
51 | 滕久康, 王庆杰, 张亮, 等. 热处理时间对锂电池正极材料Cr8O21的影响[J]. 电化学, 2021, 27(6): 689-697. |
TENG Jiukang, WANG Qingjie, ZHANG Liang, et al. Influence of heat treatment time on cathode material Cr8O21 for lithium battery[J]. Journal of Electrochemistry, 2021, 27(6): 689-697. | |
52 | 邓朝文, 刁玉琦, 张海昌. 氟化碳掺杂铬氧化物电池性能研究[J]. 电源技术, 2021, 45(5): 572-574, 581. |
DENG Chaowen, DIAO Yuqi, ZHANG Haichang. Performance studies of chromium oxide batteries doped with fluorinated carbon[J]. Chinese Journal of Power Sources, 2021, 45(5): 572-574, 581. | |
53 | 滕久康, 张亮, 张红梅, 等. 高容量铬氧化物复合材料的制备及性能[J]. 电池, 2022, 52(5): 564-568. |
TENG Jiukang, ZHANG Liang, ZHANG Hongmei, et al. Preparation and performance of high-capacity chromium oxide composite[J]. Battery Bimonthly, 2022, 52(5): 564-568. | |
54 | XIE Lingling, LI Chao, CAO Xiaoyu, et al. Preparation of delithiated Li x CoO2 as cathode material for high power densities primary lithium batteries[J]. International Journal of Electrochemical Science, 2013, 8(6): 7542-7552. |
55 | 莫俊林. 脱锂态Li1- x CoO2正极材料的制备及其性能研究[D]. 北京: 中国舰船研究院, 2017. |
MO Junlin. Research on synthesis and performance of delithiated Li1- x CoO2 as cathode material[D]. Beijing: China Ship Research and Development Academy, 2017. | |
56 | 赵东勤. 锂一次电池正极材料制备与性能研究[D]. 武汉: 华中科技大学, 2017. |
ZHAO Dongqin. Preparation and properties of cathode materials for lithium primary batteries[D]. Wuhan: Huazhong University of Science and Technology, 2017. |
[1] | MAO Ningxuan, WAN Xiaowei, JU Jie, HU Yanjie, JIANG Hao. Numerical simulation and structural optimization of flow field in industrial gas-solid fluidized beds based on CFD-PBM [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 13-20. |
[2] | MA Guixuan, XU Zitong, XIAO Zhihua, Ning Guoqing, WEI Qiang, XU Chunming. O,S co-doped carbon nanotube aqueous conductive additive assisted construction of high-performance graphite/SiO anode [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 443-456. |
[3] | SUN Qichao, NIE Meihua, WU Lianying, HU Yangdong. Optimal design and scheduling of integrated wind-photovoltaic-storage hydropower cogeneration system [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4882-4891. |
[4] | SHEN Chunyu, LI Cuili, TANG Jianwei, LIU Yong, LIU Pengfei, DING Junxiang, SHEN Bo, WANG Baoming. Progress in preparation and flame retardant application of nano magnesium hydroxide [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4980-4995. |
[5] | LI Zhenwu, PU Di, XIONG Yachun, WU Dingying, JIN Cheng, GUO Yongjun. Research progress of nanomaterials for oil displacement in enhancing oil recovery [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5035-5048. |
[6] | LOU Gaobo, YAO Xiaoling, NI Jingwen, FU Shenyuan, LIU Lina. Preparation and properties of two-dimensional mica epoxy resin composite modified by ion complex [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5142-5156. |
[7] | WU Yuqi, LI Jiangtao, DING Jianzhi, SONG Xiulan, SU Bingqin. Calcined Mg/Al hydrotalcites for CO2 removal in anaerobic digestion biogas: Performances and mechanisms [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5250-5261. |
[8] | SHI Jiabo, ZHANG Yuxuan, CHEN Xuefeng, TAN Jiaojun. Preparation and oil-water separation property of tannic acid-nanoclay synergistically modified collagen fiber-based porous materials [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4624-4629. |
[9] | REN Guoyu, TUO Yun, ZHENG Wenjie, QIAO Zeting, REN Zhuangzhuang, ZHAO Yali, SHANG Junfei, CHEN Xiaodong, GAO Xianghu. Research progress and application of superhydrophobic nano-coating technology [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4450-4463. |
[10] | WANG Lina, WU Jinsheng. Research progress of synthesis and application of covalent organic frameworks [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3834-3856. |
[11] | SHAO Wei, MA Zhuang, ZHENG Hongwei, LIU Guangju, GAO Xiang, XIE Jian, HE Qinggang. Recent advances of organic materials for aqueous rechargeable batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3872-3890. |
[12] | LIU Shida, HOU Shuandi, LIU Zhongsheng. Comparative study, prospects, and suggestions of air pollutant control standards related to the petrochemical industry source between China and the United States [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4089-4101. |
[13] | XIONG Yuanfan, LI Huashan, GONG Yulie. Multi-objective optimal design of evaporative condenser using zeotropic working fluid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2950-2960. |
[14] | LIU Siyu, YANG Juan, CHEN Pei, CHEN Zutian, YAN Bin, LIU Yuhong, QIU Jieshan. Tuning N-doped configurations of N-enriched porous carbon nanosheets for high-performance zinc ion storage [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2673-2683. |
[15] | LU Xinxin, CAI Dongren, ZHAN Guowu. Research progress in the construction of integrated catalysts based on solid precursors and their application in CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2786-2802. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 110
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 153
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |