Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 514-528.DOI: 10.16085/j.issn.1000-6613.2023-0265
• Resources and environmental engineering • Previous Articles
BU Xiangning1,2(), REN Xibing2, TONG Zheng2, NI Mengqian2, NI Chao1,2(), XIE Guangyuan1,2
Received:
2023-02-27
Revised:
2023-09-08
Online:
2024-02-05
Published:
2024-01-20
Contact:
NI Chao
卜祥宁1,2(), 任玺冰2, 童正2, 倪梦茜2, 倪超1,2(), 谢广元1,2
通讯作者:
倪超
作者简介:
卜祥宁(1990—),男,博士,讲师,硕士生导师,研究方向为微细物料分离过程强化。E-mail:xiangning.bu@foxmail.com。
基金资助:
CLC Number:
BU Xiangning, REN Xibing, TONG Zheng, NI Mengqian, NI Chao, XIE Guangyuan. Effect of power ultrasound on resource recycling and utilization of spent lithium-ion batteries: A review[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 514-528.
卜祥宁, 任玺冰, 童正, 倪梦茜, 倪超, 谢广元. 功率超声对废旧锂离子电池资源化回收利用过程的影响研究进展[J]. 化工进展, 2024, 43(1): 514-528.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0265
1 | MAKUZA Brian, TIAN Qinghua, GUO Xueyi, et al. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review[J]. Journal of Power Sources, 2021, 491: 229622. |
2 | 朱学帅, 郝廷秀, 黄雪, 等. 退役动力锂离子电池循环回收技术研究进展[J]. 矿业科学学报, 2022, 7(5): 585-594. |
ZHU Xueshuai, HAO Tingxiu, HUANG Xue, et al. Research progress on recycling technologies of lithium-ion batteries from electric vehicles[J]. Journal of Mining Science and Technology, 2022, 7(5): 585-594. | |
3 | FAN Min, CHANG Xin, MENG Qinghai, et al. Progress in the sustainable recycling of spent lithium-ion batteries[J]. SusMat, 2021, 1(2): 241-254. |
4 | RUI Xue, GENG Yong, SUN Xin, et al. Dynamic material flow analysis of natural graphite in China for 2001—2018[J]. Resources, Conservation and Recycling, 2021, 173: 105732. |
5 | 李佳竺. 废旧动力锂电池中集流体原位剥离及不同金属闭环回收研究[D]. 西安: 陕西科技大学, 2020. |
LI Jiazhu. Study on in-situ stripping of current collector and closed-loop recovery of different metals in waste lithium battery[D]. Xi'an: Shaanxi University of Science & Technology, 2020. | |
6 | 韦雅庆, 李会巧, 翟天佑, 等. 一种锂离子电池用GeP纳米片负极及其超声波辅助快速剥离制备方法: CN113753870B[P]. 2023-05-26. |
WEI Yaqing, LI Huiqiao, ZHAI Tianyou, et al. GeP nanosheet negative electrode for lithium ion battery and ultrasonic-assisted rapid stripping preparation method thereof: CN113753870B[P]. 2023-05-26. | |
7 | 杨健, 秦吉涛, 李芳成, 等. 废旧锂离子电池的湿法回收研究进展[J]. 中南大学学报(自然科学版), 2020, 51(12): 3261-3278. |
YANG Jian, QIN Jitao, LI Fangcheng, et al. Review of hydrometallurgical processes for recycling spent lithium-ion batteries[J]. Journal of Central South University (Science and Technology), 2020, 51(12): 3261-3278. | |
8 | 张英杰, 许斌, 梁风, 等. 废旧磷酸铁锂电池正极材料的回收研究现状[J]. 人工晶体学报, 2019, 48(5): 800-808. |
ZHANG Yingjie, XU Bin, LIANG Feng, et al. Review on recycling cathode materials of spent lithium iron phosphate batteries[J]. Journal of Synthetic Crystals, 2019, 48(5): 800-808. | |
9 | 许立. 废弃锂离子电池正负极混合材料分离工艺研究[D]. 兰州: 兰州理工大学, 2020. |
XU Li. Study on separation process of anode and cathode mixed materials of waste lithium ion batteries[D]. Lanzhou: Lanzhou University of Technology, 2020. | |
10 | HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86. |
11 | 黄海港, 何利华. 退役锂电池回收知识图谱分析[J]. 中国有色金属学报, 2021, 31(7): 1965-1978. |
HUANG Haigang, HE Lihua. Knowledge map analysis of recycling of waste lithium ion batteries[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(7): 1965-1978. | |
12 | 陈永珍, 黎华玲, 宋文吉, 等. 废旧磷酸铁锂电池回收技术研究进展[J]. 储能科学与技术, 2019, 8(2): 237-247. |
CHEN Yongzhen, LI Hualing, SONG Wenji, et al. A review on recycling technology of spent lithium iron phosphate battery[J]. Energy Storage Science and Technology, 2019, 8(2): 237-247. | |
13 | 刘东旭, 蔡牧涯, 陈翔, 等. 废旧锂离子电池负极材料再生和利用进展[J]. 化学工业与工程, 2021, 38(6): 2-12. |
LIU Dongxu, CAI Muya, CHEN Xiang, et al. Progress on regeneration and reutilization of anode materials from spent lithium-ion batteries[J]. Chemical Industry and Engineering, 2021, 38(6): 2-12. | |
14 | HUANG Bin, PAN Zhefei, SU Xiangyu, et al. Recycling of lithium-ion batteries: Recent advances and perspectives[J]. Journal of Power Sources, 2018, 399: 274-286. |
15 | 王皓逸, 邹昱凌, 孟奇, 等. 退役三元锂离子电池正极材料高效清洁回收技术研究进展[J]. 人工晶体学报, 2021, 50(6): 1158-1169. |
WANG Haoyi, ZOU Yuling, MENG Qi, et al. Research progress on efficient and clean recycling technology of spent ternary lithium battery cathode materials[J]. Journal of Synthetic Crystals, 2021, 50(6): 1158-1169. | |
16 | Weiguang LYU, WANG Zhonghang, CAO Hongbin, et al. A critical review and analysis on the recycling of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1504-1521. |
17 | XU Jinqiu, THOMAS H R, FRANCIS R W, et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries[J]. Journal of Power Sources, 2008, 177(2): 512-527. |
18 | PINEGAR H, SMITH Y R. Recycling of end-of-life lithium ion batteries, part Ⅰ: Commercial processes[J]. Journal of Sustainable Metallurgy, 2019, 5(3): 402-416. |
19 | PINEGAR H, SMITH Y R. Recycling of end-of-life lithium-ion batteries, part Ⅱ: Laboratory-scale research developments in mechanical, thermal, and leaching treatments[J]. Journal of Sustainable Metallurgy, 2020, 6(1): 142-160. |
20 | HE Yaqun, YUAN Xue, ZHANG Guangwen, et al. A critical review of current technologies for the liberation of electrode materials from foils in the recycling process of spent lithium-ion batteries[J]. Science of the Total Environment, 2021, 766: 142382. |
21 | KIM Seoa, BANG Jaeyeon, YOO Junsang, et al. A comprehensive review on the pretreatment process in lithium-ion battery recycling[J]. Journal of Cleaner Production, 2021, 294: 126329. |
22 | LI Li, ZHANG Xiaoxiao, LI M, et al. The recycling of spent lithium-ion batteries: A review of current processes and technologies[J]. Electrochemical Energy Reviews, 2018, 1(4): 461-482. |
23 | 陈钰, 刘冲, 邱于荟, 等. 离子液体和低共熔溶剂绿色回收废旧锂离子电池的研究进展[J]. 化工进展, 2022, 41(S1): 485-496. |
CHEN Yu, LIU Chong, QIU Yuhui, et al. Research progress of ionic liquids and green recycling of waste lithium-ion batteries in deep eutectic solvents[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 485-496. | |
24 | 程明强, 汝娟坚, 华一新, 等. 低共熔溶剂在废旧锂离子电池正极材料回收中的研究进展[J]. 化工进展, 2022, 41(6): 3293-3305. |
CHENG Mingqiang, RU Juanjian, HUA Yixin, et al. Progress of deep eutectic solvents in recovery of cathode materials from spent lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3293-3305. | |
25 | 徐政和, 刘振达, 王树宾, 等. 湿法回收废旧锂离子电池有价金属的研究进展[J]. 中国矿业大学学报, 2022, 51(3): 454-465. |
XU Zhenghe, LIU Zhenda, WANG Shubin, et al. Review on hydrometallurgical recovery of valuable metals from spent lithium-ion batteries[J]. Journal of China University of Mining & Technology, 2022, 51(3): 454-465. | |
26 | 孙静, 江镇宇, 于冠群, 等. 微波技术在锂离子电池正极材料高效回收再利用中的研究进展[J]. 环境工程学报, 2021, 15(7): 2191-2217. |
SUN Jing, JIANG Zhenyu, YU Guanqun, et al. Microwave-assisted recycling perspectives on valuable cathode active materials for lithium ion batteries: An overview[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2191-2217. | |
27 | ZHANG Guangwen, HE Yaqun, FENG Yi, et al. Pyrolysis-ultrasonic-assisted flotation technology for recovering graphite and LiCoO2 from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10896-10904. |
28 | ZHANG Guangwen, YUAN Xue, HE Yaqun, et al. Recent advances in pretreating technology for recycling valuable metals from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2021, 406: 124332. |
29 | YAO Ye, PAN Yue, LIU Shiqing. Power ultrasound and its applications: A state-of-the-art review[J]. Ultrasonics Sonochemistry, 2020, 62: 104722. |
30 | 韩格, 孔保华. 功率超声对肌原纤维蛋白功能特性及肉品品质的影响研究进展[J]. 食品科学, 2022, 43(13): 361-369. |
HAN Ge, KONG Baohua. Research progress on the effect of power ultrasound on the functional characteristics of myofibrillar protein and meat quality[J]. Food Science, 2022, 43(13): 361-369. | |
31 | BU X N, DANSTAN J K, HASSANZADEH A, et al. Metal extraction from ores and waste materials by ultrasound-assisted leaching — An overview[J]. Mineral Processing and Extractive Metallurgy Review, 2022: 1-18. |
32 | CHEN Y R, TRUONG V N T, BU X N, et al. A review of effects and applications of ultrasound in mineral flotation[J]. Ultrasonics Sonochemistry, 2020, 60: 104739. |
33 | 卜祥宁, 陈昱冉, 倪超, 等. 超声波强化低阶煤浮选研究现状及展望[J]. 矿产保护与利用, 2022, 42(1): 97-105. |
BU Xiangning, CHEN Yuran, NI Chao, et al. Ultrasound-assisted flotation of low-rank coal: A review of the current status[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 97-105. | |
34 | YASUI K. Acoustic cavitation and bubble dynamics[M]. Cham: Springer International Publishing, 2018. |
35 | OZONEK J. Application of hydrodynamic cavitation in environmental engineering[M]. Leiden: CRC Press/ Balkema, 2012. |
36 | YASUI K. Unsolved problems in acoustic cavitation[M]// ASHOKKUMAR M, CAVALIERI F, CHEMAT F, et al. Handbook of Ultrasonics and Sonochemistry. Singapore: Springer, 2016: 259-292. |
37 | HAYNES W M. CRC Handbook of chemistry and physics[M]. Boca Raton: CRC Press, 2014. |
38 | YASUI K, TUZIUTI T, SIVAKUMAR M, et al. Theoretical study of single-bubble sonochemistry[J]. The Journal of Chemical Physics, 2005, 122(22): 224706. |
39 | ZHANG Liqiang, ZHU Chenxi, YU Sicheng, et al. Status and challenges facing representative anode materials for rechargeable lithium batteries[J]. Journal of Energy Chemistry, 2022, 66: 260-294. |
40 | 刘江山. 废旧锂离子电池电极材料低温破碎、研磨及浮选分离研究[D]. 徐州: 中国矿业大学, 2020. |
LIU Jiangshan. Study on low temperature crushing, grinding and flotation separation of waste lithium ion battery electrode materials[D]. Xuzhou: China University of Mining and Technology, 2020. | |
41 | 焦奇方, 邓昌源, 欧家志, 等. 一种废旧锂离子电池回收方法: CN105870529A[P]. 2016-08-17. |
JIAO Jifang, DENG Changyuan, Jiazhi OU, et al. Recovery method for waste lithium ion batteries: CN105870529A[P]. 2016-08-17. . | |
42 | NATARAJAN S, BORICHA A B, BAJAJ H C. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries[J]. Waste Management, 2018, 77: 455-465. |
43 | 何本科. 一种石墨负极的回收再生方法: CN107959077A[P]. 2018-04-24. |
HE Benke. Method for recycling graphite negative electrodes: CN107959077A[P]. 2018-04-24. . | |
44 | DIVYA M L, NATARAJAN S, LEE Yun-Sung, et al. Achieving high-energy dual carbon Li-ion capacitors with unique low- and high-temperature performance from spent Li-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(9): 4950-4959. |
45 | 谢英豪, 余海军, 欧彦楠, 等. 从废旧动力电池中回收制备磷酸铁锂[J]. 电源技术, 2014, 38(12): 2239-2241, 2257. |
XIE Yinghao, YU Haijun, Yannan OU, et al. Recovery and preparation of LiFePO4 from used traction battery[J]. Chinese Journal of Power Sources, 2014, 38(12): 2239-2241, 2257. | |
46 | ZHANG Tao, HE Yaqun, GE Linhan, et al. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries[J]. Journal of Power Sources, 2013, 240: 766-771. |
47 | ZHU Shuguang, HE Wenzhi. Removal of organic impurities in lithium cobalt oxide from spent lithium ion batteries by ultrasonic irradiation[J]. Advanced Materials Research, 2013, 864/865/866/867: 1937-1940. |
48 | 徐成建. 超声空化作用的废锂电池正极材料分离及电解液处理研究[D]. 上海: 同济大学, 2018. |
XU Chengjian. Study on separation of cathode materials and electrolyte treatment of waste lithium batteries by ultrasonic cavitation[D]. Shanghai: Tongji University, 2018. | |
49 | 卢毅屏, 夏自发, 冯其明, 等. 废锂离子电池中集流体与活性物质的分离[J]. 中国有色金属学报, 2007, 17(6): 997-1001. |
LU Yiping, XIA Zifa, FENG Qiming, et al. Separation of current collectors and active materials from spent lithium-ion secondary batteries[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(6): 997-1001. | |
50 | 阎杰, 叶茂, 魏进平, 等. 锂离子二次电池正极边角料及残片回收方法: CN1453897A[P]. 2003-11-05. |
YAN Jie, YE Mao, WEI Jinping, et al. Recovery method for leftover and residue of positive electrode of lithium ion battery: CN1453897A[P]. 2003-11-05. | |
51 | 李金惠, 王泽峰, 陈瑶. 从废旧锂离子电池中回收钴的方法: CN101318712A[P]. 2011-07-27. |
LI Jinhui, WANG Zefeng, CHEN Yao. Method for recycling cobalt from waste and old lithium ion battery: CN101318712A[P]. 2011-07-27. | |
52 | YANG Yongxia, ZHENG Xiaohong, CAO Hongbin, et al. A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9972-9980. |
53 | LI Jinhui, SHI Pixing, WANG Zefeng, et al. A combined recovery process of metals in spent lithium-ion batteries[J]. Chemosphere, 2009, 77(8): 1132-1136. |
54 | 翁夏翔, 翁希明, 刘睿麒. 一种从废旧锂离子电池中回收钴的方法: CN111809053A[P]. 2020-10-23. |
WENG Xiaxiang, WENG Ximing, LIU Ruiqi. Method for recovering cobalt from waste lithium ion batteries: CN111809053A[P]. 2020-10-23. | |
55 | ZHOU Ming, LIU Kanglin, WEI Mingdeng, et al. Recovery of lithium iron phosphate by specific ultrasonic cavitation parameters[J]. Sustainability, 2022, 14(6): 3390. |
56 | CHEN Xiangping, LI Shuzhen, WU Xin, et al. In-situ recycling of coating materials and Al foils from spent lithium ion batteries by ultrasonic-assisted acid scrubbing[J]. Journal of Cleaner Production, 2020, 258: 120943. |
57 | TOMA C M, GHICA G V, BUZATU M, et al. A recovery process of active cathode paste from spent Li-ion batteries[J]. IOP Conference Series: Materials Science and Engineering, 2017, 209: 012034. |
58 | BIAN Doucheng, SUN Yonghui, LI Sheng, et al. A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers[J]. Electrochimica Acta, 2016, 190: 134-140. |
59 | 陈召勇, 朱华丽. 一种废弃三元锂离子动力电池的综合回收方法: CN108232351A[P]. 2020-06-09. |
CHEN Zhaoyong, ZHU Huali. Comprehensive recovery method for abandoned ternary lithium ion power battery: CN108232351A[P]. 2020-06-09. | |
60 | ZHAO Siqi, ZHANG Wenxuan, LI Guangming, et al. Ultrasonic renovating and coating modifying spent lithium cobalt oxide from the cathode for the recovery and sustainable utilization of lithium-ion battery[J]. Journal of Cleaner Production, 2020, 257: 120510. |
61 | CHEN Xiangping, LI Shuzhen, WANG Yi, et al. Recycling of LiFePO4 cathode materials from spent lithium-ion batteries through ultrasound-assisted Fenton reaction and lithium compensation[J]. Waste Management, 2021, 136: 67-75. |
62 | HUANG Tao, ZHANG Shuwen, ZHOU Lulu, et al. Synergistic effect of ultrasonication and sulfate radical on recovering cobalt and lithium from the spent lithium-ion battery[J]. Journal of Environmental Management, 2022, 305: 114395. |
63 | YAN Shuxuan, JIANG Youzhou, CHEN Xiangping, et al. Improved advanced oxidation process for in situ recycling of Al foils and cathode materials from spent lithium-ion batteries[J]. Industrial & Engineering Chemistry Research, 2022, 61(34): 12728-12738. |
64 | 赵光金, 何睦, 唐国鹏, 等. 废旧磷酸铁锂电池正极材料浸取及回收研究[J]. 电源技术, 2019, 43(3): 442-444. |
ZHAO Guangjin, HE Mu, TANG Guopeng, et al. Study on leaching and recovery of cathode material for spent lithium iron phosphate battery[J]. Chinese Journal of Power Sources, 2019, 43(3): 442-444. | |
65 | LI Li, LU Jun, REN Yang, et al. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries[J]. Journal of Power Sources, 2012, 218: 21-27. |
66 | YANG Li, XI Guoxi, XI Yuebin. Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNi x Co y Mn z O2 cathode materials[J]. Ceramics International, 2015, 41(9): 11498-11503. |
67 | NAYAKA G P, ZHANG Yingjie, DONG Peng, et al. Effective and environmentally friendly recycling process designed for LiCoO2 cathode powders of spent Li-ion batteries using mixture of mild organic acids[J]. Waste Management, 2018, 78: 51-57. |
68 | HE Lipo, SUN Shuying, SONG Xingfu, et al. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning[J]. Waste Management, 2015, 46: 523-528. |
69 | 郭雅峰, 夏志东, 毛倩瑾, 等. 超声辅助处理回收锂离子电池正极材料[J]. 电子元件与材料, 2007, 26(5): 36-38. |
GUO Yafeng, XIA Zhidong, MAO Qianjin, et al. Recovery of cathode materials from lithium-ion batteries with auxiliary ultrasonic method[J]. Electronic Components and Materials, 2007, 26(5): 36-38. | |
70 | 李建刚, 赵如松, 刘华臣. 废旧锂离子电池中有价金属的回收[J]. 中山大学学报(自然科学版), 2007, 46(B06): 256-257. |
LI Jiangang, ZHAO Rusong, LIU Huachen. Recovery of metal values from spent lithium-ion batteries[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(B06): 256-257. | |
71 | LI Jiangang, ZHANG Qian, HE Xiangming. Preparation of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent Li-ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(S1): 897-901. |
72 | LI Jiangang, ZHAO Rusong, HE Xiangming, et al. Preparation of LiCoO2 cathode materials from spent lithium-ion batteries[J]. Ionics, 2009, 15(1): 111-113. |
73 | 熊兴泉, 韩骞, 石霖, 等. 低共熔溶剂在绿色有机合成中的应用[J]. 有机化学, 2016, 36(3): 480-489. |
XIONG Xingquan HAN Qian, SHI Lin, et al. Application of deep-eutectic solvents in green organic synthesis[J]. Chinese Journal of Organic Chemistry, 2016, 36(3): 480-489. | |
74 | 陈继, 邓岳锋, 李海连, 杨茂华. 一种利用离子液体分离废旧锂离子电池正极活性物质与铝箔的方法: CN109536713A[P]. 2020-03-13. |
CHEN Ji, DENG Yuefeng, LI Hailian, et al. Method for separating waste lithium ion battery positive electrode active substance from aluminum foil through ionic liquid: CN109536713A[P]. 2020-03-13. | |
75 | JAFARI M, TORABIAN M M, BAZARGAN A. A facile chemical-free cathode powder separation method for lithium ion battery resource recovery[J]. Journal of Energy Storage, 2020, 31: 101564. |
76 | 郑元昊, 王曦. 废旧锂离子电池材料的回收与应用[J]. 造纸装备及材料, 2022, 51(1): 169-171. |
ZHENG Yuanhao, WANG Xi. Recovery and application of waste lithium ion battery materials[J]. Papermaking Equipment & Materials, 2022, 51(1): 169-171. | |
77 | 杨越, 易晨星, 伍喜庆, 等. 一种锂离子电池负极材料回收利用方法: CN110690519B[P]. 2023-03-14. |
YANG Yue, YI Chenxing, WU Xiqing, et al. Lithium ion battery negative electrode material recycling method: CN110690519B[P]. 2023-03-14. . | |
78 | 王泽峰. 废锂电池中钴的回收技术研究[D]. 北京: 清华大学, 2008. |
WANG Zefeng. Study on recovery technology of cobalt from waste lithium batteries[D]. Beijing: Tsinghua University, 2008. | |
79 | 李建波, 徐政, 纪仲光, 等. 基于规则破碎的废旧锂离子动力电池分选回收工艺研究[J]. 稀有金属, 2019, 43(7): 746-753. |
LI Jianbo, XU Zheng, JI Zhongguang, et al. Separation and recovery of spent lithium ion power batteries based on regular crushing[J]. Chinese Journal of Rare Metals, 2019, 43(7): 746-753. | |
80 | 艾戊云. 一种锂电池负极材料回收利用方法: CN108110364A[P]. 2018-06-01. |
AI Wuyun. Recycling method of negative electrode material of lithium battery: CN108110364A[P]. 2018-06-01. | |
81 | 徐越, 刘科, 孙云龙. 一种废旧锂离子电池集流体回收方法: CN108336440A[P]. 2020-04-07. |
XU Yue, LIU Ke, SUN Yunlong. Waste lithium-ion battery current collector recovery method: CN108336440A[P]. 2020-04-07. . | |
82 | 陈成. 影响钼粉筛分效率因素的分析[J]. 中国钼业, 2011, 35(3): 48-51. |
CHEN Cheng. The factors analysis of affect the efficiency for screening molybdenum powder[J]. China Molybdenum Industry, 2011, 35(3): 48-51. | |
83 | 曾伟山. 超声波振动筛在三氯蔗糖生产中的应用[J]. 广东化工, 2014, 41(14): 113-114. |
ZENG Weishan. Application in the production of sucralose in ultrasonic vibration sieve[J]. Guangdong Chemical Industry, 2014, 41(14): 113-114. | |
84 | 赵鹏飞, 尹晓莹, 满瑞林, 等. 废旧锂离子电池回收工艺研究进展[J]. 电池工业, 2011, 16(6): 367-371. |
ZHAO Pengfei, YIN Xiaoying, MAN Ruilin, et al. Research of spent Li-ion battery recycling process[J]. Chinese Battery Industry, 2011, 16(6): 367-371. | |
85 | MESHRAM P, PANDEY B D, MANKHAND T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review[J]. Hydrometallurgy, 2014, 150: 192-208. |
86 | 邹超, 潘君丽, 刘维桥, 等. 湿法回收锂离子电池三元正极材料的进展[J]. 电池, 2018, 48(2): 130-134. |
ZOU Chao, PAN Junli, LIU Weiqiao, et al. Progress in hydrometallurgical process for recycling ternary cathode material of Li-ion battery[J]. Battery Bimonthly, 2018, 48(2): 130-134. | |
87 | LI Li, QU Wenjie, LIU Fang, et al. Surface modification of spinel λ-MnO2 and its lithium adsorption properties from spent lithium ion batteries[J]. Applied Surface Science, 2014, 315: 59-65. |
88 | JIANG Feng, CHEN Yuqian, JU Shaohua, et al. Ultrasound-assisted leaching of cobalt and lithium from spent lithium-ion batteries[J]. Ultrasonics Sonochemistry, 2018, 48: 88-95. |
89 | 孙晓飞, 赵鋆泽, 周云. 一种分离并回收锂离子电池焙烧产物中有价金属的方法: CN111945006A[P]. 2020-11-17. |
SUN Xiaofei, ZHAO Yunze, ZHOU Yun. Method for separating and recovering valuable metals in roasted product of lithium ion battery: CN111945006A[P]. 2020-11-17. | |
90 | 赵锟, 林永, 王曼丽, 等. 超声波辅助酸浸法回收废旧锂离子电池中的钴[J]. 广州化工, 2013, 41(11): 90-91. |
ZHAO Kun, LIN Yong, WANG Manli, et al. Recycling cobalt from lithium-ion spent batteries by ultrasonic-assisted acid leaching technology[J]. Guangzhou Chemical Industry, 2013, 41(11): 90-91. | |
91 | 金玉健. 从废弃锂离子电池中回收钴的研究[D]. 武汉: 武汉理工大学, 2006. |
JIN Yujian. Study on recovering cobalt from waste lithium ion batteries[D]. Wuhan: Wuhan University of Technology, 2006. | |
92 | 朱华丽, 陈召勇. 一种从废锂离子电池材料中回收钴和锂的方法: CN105907989A[P]. 2017-11-10. |
ZHU Huali, CHEN Zhaoyong. Method for recycling cobalt and lithium from waste lithium ion battery material: CN105907989A[P]. 2017-11-10. | |
93 | 张永禄, 王成彦, 杨卜, 等. 废旧锂离子电池LiCoO2电极中钴的浸出动力学[J]. 有色金属(冶炼部分), 2012(8): 4-6. |
ZHANG Yonglu, WANG Chengyan, YANG Bo, et al. Leaching kinetics of cobalt from LiCoO2 cathode in spent lithium-ion batteries[J]. Nonferrous Metals (Extractive Metallurgy), 2012(8): 4-6. | |
94 | 李林林, 曹林娟, 麦永雄, 等. 废旧锂离子电池有机酸湿法冶金回收技术研究进展[J]. 储能科学与技术, 2020, 9(6): 1641-1650. |
LI Linlin, CAO Linjuan, Yongxiong MAI, et al. Research progress of the organic acid of the hydrometallurgical recovery technology in spent Li ion batteries[J]. Energy Storage Science and Technology, 2020, 9(6): 1641-1650. | |
95 | HE Hongping, FENG Junli, GAO Xiaofeng, et al. Selective separation and recovery of lithium, nickel, MnO2, and Co2O3 from LiNi0.5Mn0.3Co0.2O2 in spent battery[J]. Chemosphere, 2022, 286: 131897. |
96 | GOLMOHAMMADZADEH R, RASHCHI F, VAHIDI E. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects[J]. Waste Management, 2017, 64: 244-254. |
97 | LI Li, ZHAI Longyu, ZHANG Xiaoxiao, et al. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process[J]. Journal of Power Sources, 2014, 262: 380-385. |
98 | 钱王, 张婉玉, 董慧娴, 等. 超声波强化有机酸浸出废旧锂离子电池中钴的实验研究[J]. 广东化工, 2021, 48(9): 48-49. |
QIAN Wang, ZHANG Wanyu, DONG Huixian, et al. Experimental study on leaching cobalt from waste lithium-ion batteries with organic acids enhanced by ultrasonic wave[J]. Guangdong Chemical Industry, 2021, 48(9): 48-49. | |
99 | ESMAEILI M, RASTEGAR S O, BEIGZADEH R, et al. Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H2O2 [J]. Chemosphere, 2020, 254: 126670. |
100 | ZHOU Siyuan, ZHANG Yingjie, MENG Qi, et al. Recycling of LiCoO2 cathode material from spent lithium ion batteries by ultrasonic enhanced leaching and one-step regeneration[J]. Journal of Environmental Management, 2021, 277: 111426. |
101 | NING Peichao, MENG Qi, DONG Peng, et al. Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system[J]. Waste Management, 2020, 103: 52-60. |
102 | YAN Shuxuan, SUN Conghao, ZHOU Tao, et al. Ultrasonic-assisted leaching of valuable metals from spent lithium-ion batteries using organic additives[J]. Separation and Purification Technology, 2021, 257: 117930. |
103 | LIN Leqi, LU Zhongming, ZHANG Wen. Recovery of lithium and cobalt from spent Lithium- Ion batteries using organic aqua regia (OAR): Assessment of leaching kinetics and global warming potentials[J]. Resources Conservation and Recycling, 2021, 167: 105416. |
104 | 刘春力, 姚俊霞, 曾桂生, 等. 利用低共熔溶剂浸出废旧锂离子电池中有价金属的方法: CN111690813A[P]. 2020-09-22. |
LIU Chunli, YAO Junxia, ZENG Guisheng, et al. Method for utilizing eutecticevaporate solvent for leaching valuable metal in waste lithium ion batteries: CN111690813A[P]. 2020-09-22. | |
105 | 尹文艳, 魏致慧. 废旧锂离子电池中有价金属回收利用技术研究进展[J]. 金属材料与冶金工程, 2018, 46(2): 56-60. |
YIN Wenyan, WEI Zhihui. Progress of recovery and recycling of valuable metals from spent lithium-ion battery[J]. Metal Materials and Metallurgy Engineering, 2018, 46(2): 56-60. | |
106 | 王光旭, 李佳, 许振明. 废旧锂离子电池中有价金属回收工艺的研究进展[J]. 材料导报, 2015, 29(7): 113-123. |
WANG Guangxu, LI Jia, XU Zhenming. Recycling valuable metals from spent lithium ion batteries[J]. Materials Review, 2015, 29(7): 113-123. | |
107 | VYAS S, TING Yen-Peng. A review of the application of ultrasound in bioleaching and insights from sonication in (bio)chemical processes[J]. Resources, 2017, 7(1): 3. |
108 | BORJA D, NGUYEN K, SILVA R, et al. Experiences and future challenges of bioleaching research in South Korea[J]. Minerals, 2016, 6(4): 128. |
109 | ZHAO Siqi, ZHANG Wenxuan, LI Guangming, et al. Ultrasonic renovation mechanism of spent LCO batteries: A mild condition for cathode materials recycling[J]. Resources, Conservation and Recycling, 2020, 162: 105019. |
110 | 贺文智, 张哲鸣, 夏静, 等. 一种超声场强化失效锂离子电池中钴酸锂材料水热修复的方法: CN103073071A[P]. 2013-05-01. |
HE Wenzhi, ZHANG Zheming, XIA Jing, et al. A method of ultrasonic field strengthening the hydrothermal repair of lithium cobaltate materials in failed lithium-ion batteries: CN103073071A[P]. 2013-05-01. | |
111 | 贺文智, 朱曙光, 李光明, 等. 一种失效锂离子电池的钴酸锂材料超声修复的方法: CN102344172A[P]. 2012-02-08. |
HE Wenzhi, ZHU Shuguang, LI Guangming, et al. Method for ultrasonically repairing lithium cobaltite material of failed lithium ion battery: CN102344172A[P]. 2012-02-08. . | |
112 | 张哲鸣, 吴正斌. 一种锂电池的钴酸锂材料的修复回收方法: CN105428747A[P]. 2016-03-23. |
ZHANG Zheming, WU Zhengbin. Restoration and recycling method of lithium cobaltate materials of lithium batteries: CN105428747A[P]. 2016-03-23. . | |
113 | ZHANG Zheming, HE Wenzhi, LI Guangming, et al. Renovation of LiCoO2 crystal structure from spent lithium ion batteries by ultrasonic hydrothermal reaction[J]. Research on Chemical Intermediates, 2015, 41(6): 3367-3373. |
114 | ZHANG Zheming, HE Wenzhi, LI Guangming, et al. Ultrasound-assisted hydrothermal renovation of LiCoO2 from the cathode of spent lithium-ion batteries[J]. International Journal of Electrochemical Science, 2014, 9(7): 3691-3700. |
115 | 张哲鸣, 王文伟, 李凤姣. 一种从废旧钴酸锂电池中回收再生正极材料的方法: CN112707447A[P]. 2021-04-27. |
ZHANG Zheming, WANG Wenwei, LI Fengjiao. Method for recycling regenerated positive electrode material from waste lithium cobalt oxide battery: CN112707447A[P]. 2021-04-27. . | |
116 | WU Pengfei, BAI Lixin, LIN Weijun, et al. Mechanism and dynamics of hydrodynamic-acoustic cavitation (HAC)[J]. Ultrasonics Sonochemistry, 2018, 49: 89-96. |
117 | 张光文. 基于热解的废旧锂离子电池电极材料解离与浮选基础研究[D]. 徐州: 中国矿业大学, 2019. |
ZHANG Guangwen. Basic research on dissociation and flotation of electrode materials for waste lithium ion batteries based on pyrolysis[D]. Xuzhou: China University of Mining and Technology, 2019. | |
118 | SHIH Yu-Jen, CHIEN Shih-Kai, JHANG Syu-Ruei, et al. Chemical leaching, precipitation and solvent extraction for sequential separation of valuable metals in cathode material of spent lithium ion batteries[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100: 151-159. |
119 | HUANG Zhe, LIN Mi, QIU Ruijun, et al. A novel technology of recovering magnetic micro particles from spent lithium-ion batteries by ultrasonic dispersion and waterflow-magnetic separation[J]. Resources, Conservation and Recycling, 2021, 164: 105172. |
120 | 孙晓飞, 周云. 一种超声波-微波辅助回收锂离子电池的方法: CN111961860A[P]. 2020-11-20. |
SUN Xiaofei, ZHOU Yun. Ultrasonic-microwave assisted lithium ion battery recovery method: CN111961860A[P]. 2020-11-20. | |
121 | WANG Yu, TU Yanan, XU Zhiqiang, et al. A promising method for recovery of graphite and cathode materials from spent lithium-ion batteries[J]. Ionics, 2022, 28(6): 2603-2611. |
122 | ZHANG Lei, WANG Xue, HU Yang, et al. Dual-frequency multi-angle ultrasonic processing technology and its real-time monitoring on physicochemical properties of raw soymilk and soybean protein[J]. Ultrasonics Sonochemistry, 2021, 80: 105803. |
123 | LUO Xiaoming, CAO Juhang, GONG Haiyang, et al. Phase separation technology based on ultrasonic standing waves: A review[J]. Ultrasonics Sonochemistry, 2018, 48: 287-298. |
124 | XU Baoguo, AZAM S M R, FENG Min, et al. Application of multi-frequency power ultrasound in selected food processing using large-scale reactors: A review[J]. Ultrasonics Sonochemistry, 2021, 81: 105855. |
125 | 陈兰兰, 卢东方, 王毓华, 等. 超声波技术在矿物浮选中的研究、应用现状及发展趋势[J]. 中国有色金属学报, 2021, 31(4): 1042-1056. |
CHEN Lanlan, LU Dongfang, WANG Yuhua, et al. Research and application of ultrasonic technology in mineral flotation and development trend[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(4): 1042-1056. | |
126 | RYNDZIONEK R, SIENKIEWICZ Ł. A review of recent advances in the single- and multi-degree-of-freedom ultrasonic piezoelectric motors[J]. Ultrasonics, 2021, 116: 106471. |
127 | 沈丽媛, 吴宏, 李姜, 等. 聚合物熔体超声辅助加工的研究进展[J]. 高分子材料科学与工程, 2014, 30(2): 205-209. |
SHEN Liyuan, WU Hong, LI Jiang, et al. Progress in ultrasound assisted processing of polymer melt[J]. Polymer Materials Science & Engineering, 2014, 30(2): 205-209. |
[1] | DU Cuihua, ZHANG Xi, WANG Xiaodong, HUANG Wei, ZHOU Ming. Preparation of PDA@PEBA2533 membranes for C3H6/N2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 437-446. |
[2] | CHEN Le, CHONG Hailing, ZHANG Zhihui, HE Mingyang, CHEN Qun. Synthesis of Cu-BTC modified by CTAB and its adsorption and separation of xylene isomers [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 455-464. |
[3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[4] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[5] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[6] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[7] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[8] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[9] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[10] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[11] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[12] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
[13] | HU Yafei, FENG Ziping, TIAN Jiayao, SONG Wenji. Waste heat recovery performance of an air-source gas engine-driven heat pump system in multi-heating operation modes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4204-4211. |
[14] | YANG Jing, LI Bo, LI Wenjun, LIU Xiaona, TANG Liuyuan, LIU Yue, QIAN Tianwei. Degradation of naphthalene by degrading bacteria isolated from coking contaminated sites [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4351-4361. |
[15] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |