Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (10): 5548-5557.DOI: 10.16085/j.issn.1000-6613.2022-2111
• Resources and environmental engineering • Previous Articles Next Articles
ZHANG Huixia1(), ZHOU Lishan2, ZHANG Chenglei2, QIAN Guanglei2, XIE Chenxin2(), ZHU Lingzhi1()
Received:
2022-11-14
Revised:
2023-04-21
Online:
2023-11-11
Published:
2023-10-15
Contact:
XIE Chenxin, ZHU Lingzhi
张会霞1(), 周立山2, 张程蕾2, 钱光磊2, 谢陈鑫2(), 朱令之1()
通讯作者:
谢陈鑫,朱令之
作者简介:
张会霞(1996—),女,硕士研究生,研究方向为光电催化处理废水。E-mail:1028282574@qq.com。
CLC Number:
ZHANG Huixia, ZHOU Lishan, ZHANG Chenglei, QIAN Guanglei, XIE Chenxin, ZHU Lingzhi. Preparation of Bi2S3/TiO2 nanocone photoanode and their photoelectrocatalysis degradation of hygromycin[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5548-5557.
张会霞, 周立山, 张程蕾, 钱光磊, 谢陈鑫, 朱令之. Bi2S3/TiO2纳米锥光阳极的制备及其光电催化降解土霉素[J]. 化工进展, 2023, 42(10): 5548-5557.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2111
光阳极 | 体积/浓度 | 时间/min | 降解率/% | 参考文献 |
---|---|---|---|---|
Pt-N/TiO2 | 30mg/L | 60 | 56.17 | [ |
Cu2O/α-Fe2O3 | 50mL、10mg/L | 60 | 73.3 | [ |
ZnO/TiO2/Ag2Se | 100mL、5mg/L | 360 | 96.5 | [ |
Bi/Bi2O3/TiO2 | 10mg/L | 300 | 76.1 | [ |
rGO/g-C3N4/TiO2 | 80mL、40mg/L | 60 | 69.37 | [ |
Bi2S32/TNCs | 100mL、10mg/L | 90 | 80.3 | 本工作 |
光阳极 | 体积/浓度 | 时间/min | 降解率/% | 参考文献 |
---|---|---|---|---|
Pt-N/TiO2 | 30mg/L | 60 | 56.17 | [ |
Cu2O/α-Fe2O3 | 50mL、10mg/L | 60 | 73.3 | [ |
ZnO/TiO2/Ag2Se | 100mL、5mg/L | 360 | 96.5 | [ |
Bi/Bi2O3/TiO2 | 10mg/L | 300 | 76.1 | [ |
rGO/g-C3N4/TiO2 | 80mL、40mg/L | 60 | 69.37 | [ |
Bi2S32/TNCs | 100mL、10mg/L | 90 | 80.3 | 本工作 |
1 | 张延, 严晓菊, 孙越, 等. 中国抗生素滥用现状及其在环境中的分布情况[J]. 当代化工, 2019, 48(11): 2660-2662. |
ZHANG Yan, YAN Xiaoju, SUN Yue, et al. Current situation of antibiotic abuse in China and its residues distribution in the environment[J]. Contemporary Chemical Industry, 2019, 48(11): 2660-2662. | |
2 | Hyejun JO, RAZA Shahbaz, FAROOQ Adeel, et al. Fish farm effluents as a source of antibiotic resistance gene dissemination on Jeju Island, South Korea[J]. Environmental Pollution, 2021, 276: 116764. |
3 | PAULUS Gabriela K, HORNSTRA Luc M, ALYGIZAKIS Nikiforos, et al. The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes[J]. International Journal of Hygiene and Environmental Health, 2019, 222(4): 635-644. |
4 | 李士俊, 谢文明. 污水处理厂中抗生素去除规律研究进展[J]. 环境科学与技术, 2019, 42(3): 17-29. |
LI Shijun, XIE Wenming. Research advances in antibiotics removal in wastewater treatment plants: A review[J]. Environmental Science & Technology, 2019, 42(3): 17-29. | |
5 | 邵一如, 席北斗, 曹金玲, 等. 抗生素在城市污水处理系统中的分布及去除[J]. 环境科学与技术, 2013, 36(7): 85-92, 182. |
SHAO Yiru, XI Beidou, CAO Jinling, et al. Occurrence of antibiotics and their removal mechanism in municipal sewage treatment plants[J]. Environmental Science & Technology, 2013, 36(7): 85-92, 182. | |
6 | 尹福斌, 詹源航, 岳彩德, 等. 膜分离技术在大型养殖场沼液处理中的应用与展望[J]. 农业环境科学学报, 2021, 40(11): 2335-2341. |
YIN Fubin, ZHAN Yuanhang, YUE Caide, et al. Research progress on membrane technology for treatment of husbandry biogas slurry and wastewater[J]. Journal of Agro-Environment Science, 2021, 40(11): 2335-2341. | |
7 | ZHU Tingting, SU Zhongxian, LAI Wenxia, et al. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology[J]. Science of the Total Environment, 2021, 776: 145906. |
8 | Sergi GARCIA-SEGURA, BRILLAS Enric. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 31: 1-35. |
9 | Renato MONTENEGRO-AYO, MORALES-GOMERO Juan Carlos, ALARCON Hugo, et al. Photoelectrocatalytic degradation of 2,4-dichlorophenol in a TiO2 nanotube-coated disc flow reactor[J]. Chemosphere, 2021, 268: 129320. |
10 | DIVYAPRIYA G, SINGH Seema, MARTÍNEZ-HUITLE Carlos A, et al. Treatment of real wastewater by photoelectrochemical methods: An overview[J]. Chemosphere, 2021, 276: 130188. |
11 | LIU Dong, LI Huijun, GAO Ranpeng, et al. Enhanced visible light photoelectrocatalytic degradation of tetracycline hydrochloride by I and P co-doped TiO2 photoelectrode[J]. Journal of Hazardous Materials, 2021, 406: 124309. |
12 | LIANOS Panagiotis. Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen[J]. Applied Catalysis B: Environmental, 2017, 210: 235-254. |
13 | LIU Yunni, LI Qian, LIAN Zichao, et al. Polarization field promoted photoelectrocatalysis for synergistic environmental remediation and H2 production[J]. Chemical Engineering Journal, 2022, 437: 135132. |
14 | SONG Rui, CHI Haibo, MA Qiuling, et al. Highly efficient degradation of persistent pollutants with 3D nanocone TiO2-based photoelectrocatalysis[J]. Journal of the American Chemical Society, 2021, 143(34): 13664-13674. |
15 | WEI Zhidong, LIU Junying, SHANGGUAN Wenfeng. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production[J]. Chinese Journal of Catalysis, 2020, 41(10): 1440-1450. |
16 | 沈祥. 硫化铋纳米半导体材料的合成及其光电性质研究[D]. 长沙: 湖南大学, 2021. |
SHEN Xiang. Synthesis and photoelectric properties of bismuth sulfide nano-semiconductor materials[D]. Changsha: Hunan University, 2021. | |
17 | FENG Jun, JIANG Tao, HAN Yingchun, et al. Construction of dual Z-scheme Bi2S3/Bi2O3/WO3 ternary film with enhanced visible light photoelectrocatalytic performance[J]. Applied Surface Science, 2020, 505: 144632. |
18 | LIU Canjun, YANG Yahui, LI Wenzhang, et al. A novel Bi2S3 nanowire @ TiO2 nanorod heterogeneous nanostructure for photoelectrochemical hydrogen generation[J]. Chemical Engineering Journal, 2016, 302: 717-724. |
19 | LU Yan, RADIAN Popescu, DAGMAR Gerthsen, et al. Highly efficient recovery of H2 from industrial waste by sunlight-driven photoelectrocatalysis over a ZnS/Bi2S3/ZnO photoelectrode[J]. ACS Applied Materials & Interfaces, 2022, 14(6): 7756-7767. |
20 | AI Changzhi, XIE Pengcheng, ZHANG Xidong, et al. Explaining the enhanced photoelectrochemical behavior of highly ordered TiO2 nanotube arrays: Anatase/rutile phase junction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5274-5282. |
21 | MA Hao, YUAN Chenchen, WANG Xiaomin, et al. Deposition of CeO2 on TiO2 nanorods electrode by dielectric barrier discharge plasma to enhance the photoelectrochemical performance in high chloride salt system[J]. Separation and Purification Technology, 2021, 276: 119252. |
22 | REN Suocai, YANG Huimin, ZHANG Dingding, et al. Excellent performance of the photoelectrocatalytic CO2 reduction to formate by Bi2S3/ZIF-8 composite[J]. Applied Surface Science, 2022, 579: 152206. |
23 | JIA Meiying, LIU Qi, XIONG Weiping, et al. Ti3+ self-doped TiO2 nanotubes photoelectrode decorated with Ar-Fe2O3 derived from MIL-100(Fe): Enhanced photo-electrocatalytic performance for antibiotic degradation[J]. Applied Catalysis B: Environmental, 2022, 310: 121344. |
24 | FENG Chengyang, DENG Yaocheng, TANG Lin, et al. Core-shell Ag2CrO4/[email protected]3N4 composites with anti-photocorrosion performance for enhanced full-spectrum-light photocatalytic activities[J]. Applied Catalysis B: Environmental, 2018, 239: 525-536. |
25 | LI Xibao, KANG Bangbang, DONG Fan, et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies[J]. Nano Energy, 2021, 81: 105671. |
26 | LIU Yazi, ZHANG Huayang, KE Jun, et al. 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 228: 64-74. |
27 | XIE Yibing, ZHOU Limin, HUANG Chuanjun, et al. Fabrication of nickel oxide-embedded titania nanotube array for redox capacitance application[J]. Electrochimica Acta, 2008, 53(10): 3643-3649. |
28 | CAO Wen, YUAN Yuhang, YANG Cao, et al. In-situ fabrication of g-C3N4/MIL-68(In)-NH2 heterojunction composites with enhanced visible-light photocatalytic activity for degradation of ibuprofen[J]. Chemical Engineering Journal, 2020, 391: 123608. |
29 | TANG Haifang, SHANG Qian, TANG Yanhong, et al. Static and continuous flow photoelectrocatalytic treatment of antibiotic wastewater over mesh of TiO2 nanotubes implanted with g-C3N4 nanosheets[J]. Journal of Hazardous Materials, 2020, 384: 121248. |
30 | 张警方. CeZn/TiO2纳米管阵列光电催化降解苯并异噻唑啉酮[D]. 大连: 大连理工大学, 2020. |
ZHANG Jingfang. Photocatalytic degradation of benzisothiazolinone by CeZn/TiO2 nanotube array[D]. Dalian: Dalian University of Technology, 2020. | |
31 | LI Zhaojun, QI Weining, FENG Yao, et al. Degradation mechanisms of oxytetracycline in the environment[J]. Journal of Integrative Agriculture, 2019, 18(9): 1953-1960. |
32 | WANG Liming, LI Mengyao, PEI Liang, et al. Pt-N co-modified TiO2 nanotube electrode photoelectrocatalytic degradation of oxytetracycline in simulated wastewater[J]. Toxics, 2022, 10(11): 635. |
33 | CHENG Ling, TIAN Yulu, ZHANG Jingdong. Construction of p-n heterojunction film of Cu2O/α-Fe2O3 for efficiently photoelectrocatalytic degradation of oxytetracycline[J]. Journal of Colloid and Interface Science, 2018, 526: 470-479. |
34 | CHANGANAQUI Katherina, BRILLAS Enric, Hugo ALARCÓN, et al. ZnO/TiO2/Ag2Se nanostructures as photoelectrocatalysts for the degradation of oxytetracycline in water[J]. Electrochimica Acta, 2020, 331: 135194. |
35 | QIN Jin, YE Shangshi, YAN Kai, et al. Visible light-driven photoelectrocatalysis for simultaneous removal of oxytetracycline and Cu (Ⅱ) based on plasmonic Bi/Bi2O3/TiO2 nanotubes[J]. Journal of Colloid and Interface Science, 2022, 607: 1936-1943. |
36 | YU Chengze, HOU Jiaqi, ZHANG Bin, et al. In-situ electrodeposition synthesis of Z-scheme rGO/g-C3N4/TNAs photoelectrodes and its degradation mechanism for oxytetracycline in dual-chamber photoelectrocatalytic system[J]. Journal of Environmental Management, 2022, 308: 114615. |
[1] | ZHANG Zhiwei, YANG Weixin, ZHANG Junji. Recent progress of long-wavelength-light-driven photoswitches [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4058-4075. |
[2] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[3] | LIU Haicheng, MENG Wushuang, HUANG Zhe, YOU Yu, HUA Ruiqi, CAO Mengru. Preparation of WO3/BiOCl0.7I0.3 photocatalyst and its photocatalytic degradation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 255-264. |
[4] | WANG Yimeng, LIU Jianjun, ZUO Shengli, LI Kang. Research progress of active sites of MoS2 photoelectrocatalyst: optimization and performance [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3747-3759. |
[5] | LUO Juxiang, CHENG Deshu, LI Mingchun, XIN Meihua. Preparation of P2VP-b-PSt nano-objects via visible light-mediated polymerization-induced self-assembly at room temperature [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2676-2684. |
[6] | FU Shurong, ZHANG Qinsheng, LU Jinzhi, MA Zhanwei. Research progress of fabrication of ZnO-based photoanode and photoelectrocatalytic water splitting performances [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1413-1424. |
[7] | Wenhua ZHANG,Liwen DIAN,Haiyan CHEN,Wenhua YE,Xiaofeng HU,Huihu WANG,Ying CHANG,Xinguo MA,Shijie DONG. Improvement on the photoelectrocatalytic performance of tungsten oxide(WO3) thin film and its application prospects [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 521-532. |
[8] | ZHU Enquan, MA Yuhua, AINIWA·Munire. Research progress of red phosphorus photocatalytic materials [J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 139-143. |
[9] | Zhen ZHANG,Baodong WANG,Xinglei ZHAO,Ge LI,Hongyan WANG,Jiali ZHOU,Qi SUN. Research progress of energy utilization of CO2 by photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 3927-3935. |
[10] | Lifu NIE, Zhe XU, Shanming KE, Xierong ZENG, Peng LIN. Research progress of the modification of TiO2 by Au nanoparticles for photoelectrocatalytic applications [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3274-3284. |
[11] | GONG Jiuyan, SONG Wendong, CHEN Jialin, LI Shijie, CAI Lu, JI Lili. Ag/AgBr-diatomaceous earth composite photocatalysts with superior photocatalytic performance under visible-light irridiation [J]. Chemical Industry and Engineering Progress, 2017, 36(09): 3309-3315. |
[12] | WANG Ao, SUN Kang, JIANG Jianchun. Immobilized phthalocyanines for visible light photodegradation of organic pollutants in water and air [J]. Chemical Industry and Engineering Progress, 2017, 36(09): 3475-3484. |
[13] | FANG Junhua, ZHANG Kai, ZHANG Wei, WANG Zhongyuan. Preparation of novel Sb2O3/BiOBr composite and decontamination of RhB [J]. Chemical Industry and Engineering Progress, 2017, 36(03): 1140-1146. |
[14] | WANG Kaifang, LIU Guang, GAO Xusheng, HE dongying, LI Jinping. Hematite photoanodes for solar water splitting [J]. Chemical Industry and Engineering Progree, 2017, 36(02): 397-409. |
[15] | SHAO Xiankun, HAO Yonggan, LIU Tongxuan, HU Luyang, WANG Yuanyuan, LI Benxia. Research progress of Ag(Au)/semiconductor nanohybrid photocatalysts based on surface plasmon resonance [J]. Chemical Industry and Engineering Progree, 2016, 35(01): 131-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |