Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (10): 5538-5547.DOI: 10.16085/j.issn.1000-6613.2022-2121
• Resources and environmental engineering • Previous Articles Next Articles
PAN Sirui(), DENG Wenyi(), SU Yaxin
Received:
2022-11-16
Revised:
2023-01-19
Online:
2023-11-11
Published:
2023-10-15
Contact:
DENG Wenyi
通讯作者:
邓文义
作者简介:
潘思睿(1997—),男,硕士研究生,研究方向为污泥黏附性机理。E-mail:18252588491@163.com。
基金资助:
CLC Number:
PAN Sirui, DENG Wenyi, SU Yaxin. Verification and application of circuit probe method for measuring the liquid film thickness of sewage sludge[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5538-5547.
潘思睿, 邓文义, 苏亚欣. 电路探针测量污泥液膜厚度方法验证及应用[J]. 化工进展, 2023, 42(10): 5538-5547.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2121
名称 | 灰分/% | 挥发分/% | 固定碳/% |
---|---|---|---|
干污泥 | 45.89 | 47.80 | 6.31 |
名称 | 灰分/% | 挥发分/% | 固定碳/% |
---|---|---|---|
干污泥 | 45.89 | 47.80 | 6.31 |
已知液膜厚度/mm | s/mm | SE/mm | z值 | 95%置信区间 | |
---|---|---|---|---|---|
0.5 | 0.736 | 0.254 | 0.045 | 1.96 | [0.648, 0.825] |
2 | 2.003 | 0.313 | 0.055 | 1.96 | [1.890, 2.112] |
4 | 4.333 | 0.456 | 0.081 | 1.96 | [4.169, 4.497] |
已知液膜厚度/mm | s/mm | SE/mm | z值 | 95%置信区间 | |
---|---|---|---|---|---|
0.5 | 0.736 | 0.254 | 0.045 | 1.96 | [0.648, 0.825] |
2 | 2.003 | 0.313 | 0.055 | 1.96 | [1.890, 2.112] |
4 | 4.333 | 0.456 | 0.081 | 1.96 | [4.169, 4.497] |
污泥含水率 (质量分数)/% | 电压/V | 电渗时间/s | 液膜厚度 均值/mm | 95%置信水平下的置信区间 |
---|---|---|---|---|
60 | 10 | 15 | 0.152 | [0.121, 0.183] |
60 | 20 | 15 | 0.290 | [0.270, 0.310] |
60 | 30 | 15 | 0.498 | [0.451,0.546] |
60 | 40 | 15 | 0.286 | [0.260, 0.311] |
60 | 30 | 30 | 0.267 | [0.222, 0.312] |
60 | 30 | 45 | 0.208 | [0.172, 0.244] |
60 | 30 | 60 | 0.202 | [0.171, 0.233] |
70 | 10 | 15 | 0.246 | [0.217, 0.275] |
70 | 20 | 15 | 0.315 | [0.272, 0.359] |
70 | 30 | 15 | 0.485 | [0.437, 0.533] |
70 | 40 | 15 | 0.424 | [0.379, 0.468] |
70 | 30 | 30 | 0.351 | [0.324, 0.378] |
70 | 30 | 45 | 0.430 | [0.393, 0.467] |
70 | 30 | 60 | 0.342 | [0.293, 0.392] |
80 | 10 | 15 | 0.170 | [0.139, 0.201] |
80 | 20 | 15 | 0.353 | [0.301, 0.405] |
80 | 30 | 15 | 0.531 | [0.477, 0.584] |
80 | 40 | 15 | 0.422 | [0.369, 0.474] |
80 | 30 | 30 | 0.386 | [0.345, 0.427] |
80 | 30 | 45 | 0.345 | [0.317, 0.373] |
80 | 30 | 60 | 0.400 | [0.359, 0.442] |
污泥含水率 (质量分数)/% | 电压/V | 电渗时间/s | 液膜厚度 均值/mm | 95%置信水平下的置信区间 |
---|---|---|---|---|
60 | 10 | 15 | 0.152 | [0.121, 0.183] |
60 | 20 | 15 | 0.290 | [0.270, 0.310] |
60 | 30 | 15 | 0.498 | [0.451,0.546] |
60 | 40 | 15 | 0.286 | [0.260, 0.311] |
60 | 30 | 30 | 0.267 | [0.222, 0.312] |
60 | 30 | 45 | 0.208 | [0.172, 0.244] |
60 | 30 | 60 | 0.202 | [0.171, 0.233] |
70 | 10 | 15 | 0.246 | [0.217, 0.275] |
70 | 20 | 15 | 0.315 | [0.272, 0.359] |
70 | 30 | 15 | 0.485 | [0.437, 0.533] |
70 | 40 | 15 | 0.424 | [0.379, 0.468] |
70 | 30 | 30 | 0.351 | [0.324, 0.378] |
70 | 30 | 45 | 0.430 | [0.393, 0.467] |
70 | 30 | 60 | 0.342 | [0.293, 0.392] |
80 | 10 | 15 | 0.170 | [0.139, 0.201] |
80 | 20 | 15 | 0.353 | [0.301, 0.405] |
80 | 30 | 15 | 0.531 | [0.477, 0.584] |
80 | 40 | 15 | 0.422 | [0.369, 0.474] |
80 | 30 | 30 | 0.386 | [0.345, 0.427] |
80 | 30 | 45 | 0.345 | [0.317, 0.373] |
80 | 30 | 60 | 0.400 | [0.359, 0.442] |
1 | 戴晓虎. 我国污泥处处置现状及发展趋势[J]. 科学(上海), 2020, 72(6): 30-34. |
DAI X H. Present situation and development trend of sludge treatment and disposal in China[J]. Science, 2020, 72(6): 30-34. | |
2 | BENNAMOUN L, ARLABOSSE P, LÉONARD A. Review on fundamental aspect of application of drying process to wastewater sludge[J]. Renewable and Sustainable Energy Reviews, 2013, 28: 29-43. |
3 | SKINNER S J, STUDER L J, DIXON D R, et al. Quantification of wastewater sludge dewatering[J]. Water Research, 2015, 82: 2-13. |
4 | PEETERS B, DEWIL R, VERNIMMEN L, et al. Addition of polyaluminiumchloride (PACl) to waste activated sludge to mitigate the negative effects of its sticky phase in dewatering-drying operations[J]. Water Research, 2013, 47(11): 3600-3609. |
5 | 金澎, 朱秀伟, 亓永亮, 等. 市政污泥干燥过程中粘性的研究[J]. 干燥技术与设备, 2015, 13(5): 35-42. |
JIN P, ZHU X W, QI Y L, et al. Study of town sludge stickiness in drying process[J]. Drying Technology & Equipment, 2015, 13(5): 35-42. | |
6 | FONT R, GOMEZ-RICO M F, FULLANA A. Skin effect in the heat and mass transfer model for sewage sludge drying[J]. Separation and Purification Technology, 2011, 77(1): 146-161. |
7 | LYU F Y, LING C H, LI H, et al. Experimental research of how the boundary layer lower the pipe drag reduction in transport of dense paste[J]. Lubrication Science, 2017, 29(6): 411-422. |
8 | 赖江钿, 程明双, 余光伟, 等. 利用电动修复技术原位氧化去除黑臭底泥还原性污染物的室内模拟实验[J]. 环境工程学报, 2020, 14(7): 1779-1788. |
LAI J T, CHENG M S, YU G W, et al. Indoor simulation experiment of in situ oxidation removing the reductive pollutants in black-odorous river sediment with electrokinetic remediation[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1779-1788. | |
9 | MA D G, ZHANG S T, LI Z Y. Control of sludge-to-wall adhesion by applying a polarized electric field[J]. Drying Technology, 2007, 25(4): 639-643. |
10 | COOPER G A, ROY S. Prevention of bit balling by electro-osmosis[C]. California: Society of Petroleum Engineers, 1994. |
11 | HARIHARAN P, COOPER G, HALE A H. Bit balling reduction by electro-osmosis while drilling shale using a model BHA (Bottom Hole Assembly) [C]. Dallas: IADC/SPE Drilling Conference, 1998. |
12 | ROY S, COOPER G A. Effect of electro-osmosis on the indentation of clays[C]. Norman: The 32nd U.S. Symposium on Rock Mechanics, 1991. |
13 | SPAGNOLI G, KLITZSCH N, FERNANDEZ-STEEGER T, et al. Application of electro-osmosis to reduce the adhesion of clay during mechanical tunnel driving[J]. Environmental & Engineering Geoscience, 2011, 17(4): 417-426. |
14 | 任露泉. 地面机械脱附减阻仿生研究进展[J]. 中国科学E辑, 2008, 38(9): 1353-1364. |
REN L Q. Research progress of bionic drag reduction by ground mechanical desorption[J]. Science in China, 2008, 38(9): 1353-1364. | |
15 | REN L Q, CONG Q, TONG J, et al. Reducing adhesion of soil against loading shovel using bionic electro-osmosis method[J]. Journal of Terramechanics, 2001, 38(4): 211-219. |
16 | DENG W Y, ZHOU J, YU L, et al. Application of boundary electro-osmotic pulse to reduce sludge-to-wall adhesion[J]. Water Research, 2021, 195: 116982. |
17 | CHENG Y S, DENG K Y, LI T. Measurement and simulation of wall-wetted fuel film thickness[J]. International Journal of Thermal Sciences, 2010, 49(4): 733-739. |
18 | ZHOU D W, GAMBARYAN-ROISMAN T, STEPHAN P. Measurement of water falling film thickness to flat plate using confocal chromatic sensoring technique[J]. Experimental Thermal and Fluid Science, 2009, 33(2): 273-283. |
19 | HAN Y, SHIKAZONO N. Measurement of liquid film thickness in micro square channel[J]. International Journal of Multiphase Flow, 2009, 35(10): 896-903. |
20 | YANG H N, WEI W, SU M X, et al. Measurement of liquid water film thickness on opaque surface with diode laser absorption spectroscopy[J]. Flow Measurement and Instrumentation, 2018, 60: 110-114. |
21 | 苏明旭, MUHAMMAD A A, 蒋永, 等. 超声脉冲反射法和激光吸收光谱法同步测量流动液膜厚度[J]. 化工学报, 2018, 69(7): 2972-2978. |
SU M X, MUHAMMAD A A, JIANG Y, et al. Synchronous thickness measurements of flowing liquid film on horizontal surface by ultrasonic pulse-echo and laser absorption spectroscopy methods[J]. CIESC Journal, 2018, 69(7): 2972-2978. | |
22 | ABDULKADIR M, AZZI A, ZHAO D, et al. Liquid film thickness behaviour within a large diameter vertical 180° return bend[J]. Chemical Engineering Science, 2014, 107: 137-148. |
23 | TIWARI R, DAMSOHN M, PRASSER H M, et al. Multi-range sensors for the measurement of liquid film thickness distributions based on electrical conductance[J]. Flow Measurement and Instrumentation, 2014, 40: 124-132. |
24 | 王文武, 李春国, 王新军, 等. 金属表面流动液膜厚度的电导法测量技术研究[J]. 东方汽轮机, 2010(1): 21-25. |
WANG W W, LI C G, WANG X J, et al. A study on measurement of thickness of thin liquid film on metal surfaces[J]. Dongfang Turbine, 2010(1): 21-25. | |
25 | 石要武, 任露泉, 李建桥, 等. 土壤金属界面水膜测量的浓差极化方法[J]. 农业工程学报, 1997, 13(1): 25-29. |
SHI Y W, REN L Q, LI J Q, et al. Concentration on polarization rule of the water film between soil and metal interface[J]. Transactions of the Chinese Society of Agricultural Engineering, 1997, 13(1): 25-29. | |
26 | DENG W Y, LI X D, YAN J H, et al. Moisture distribution in sludges based on different testing methods[J]. Journal of Environmental Sciences, 2011, 23(5): 875-880. |
27 | 唐建国. 污泥深度脱水中的电渗析脱水机简介[J]. 给水排水, 2014, 40(11): 85-86. |
TANG J G. Brief introduction of electrodialysis dehydrator in sludge deep dehydration[J]. Water & Wastewater Engineering, 2014, 40(11): 85-86. | |
28 | YANG Z, PENG X F, LEE D J. Electroosmotic flow in sludge flocs[J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 2992-2999. |
29 | 王柳江, 刘斯宏, 汪俊波, 等. 真空预压联合电渗法处理高含水率软土模型试验[J]. 河海大学学报, 2011, 39(6): 671-675. |
WANG L J, LIU S H, WANG J B, et al. Model test for high-water-content soft soil treatment under vacuum preloading in combination with electroosmosis[J]. Journal of Hohai University, 2011, 39(6): 671-675. | |
30 | MAHMOUD A, OLIVIER J, VAXELAIRE J, et al. Electrical field: A historical review of its application and contributions in wastewater sludge dewatering[J]. Water Research, 2010, 44(8): 2381-2407. |
31 | DENG W Y, LAI Z C, HU M H, et al. Effects of frequency and duty cycle of pulsating direct current on the electro-dewatering performance of sewage sludge[J]. Chemosphere, 2020, 243: 125372. |
32 | 赖志成. 界面电渗脉冲作用下金属表面污泥降粘的参数优化及水分迁移规律研究[D]. 上海: 东华大学, 2020. |
LAI Z C. Parameter optimization and water migration of sludge viscosity reduction on metal surface under the action of interfacial electroosmotic pulse[D]. Shanghai: Donghua University, 2020. |
[1] | ZHENG Xin, JIA Li, WANG Yanlin, ZHANG Jingchao, CHEN Shihu, QIAO Xiaolei, FAN Baoguo. Effect of sewage sludge mixed with coal slime on heavy metal retention characteristics [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3233-3241. |
[2] | ZHAO Jiaqi, HUANG Yaji, LI Zhiyuan, DING Xueyu, QI Shuaijie, ZHANG Yuyao, LIU Jun, GAO Jiawei. Characteristics of three-phase products from co-pyrolysis of sewage sludge and PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2122-2129. |
[3] | WANG Yibin, FENG Jingwu, TAN Houzhang, LI Liangyu. Research progress on phosphorus speciation transformation and recovery during thermal chemical conversion of municipal sewage sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 985-999. |
[4] | WANG Siyi, LI Yuehui, GE Yujie, WANG Huanran, ZHAO Lulu, LI Xianchun. Gasification of sewage sludge and its model compounds with NTP-DBD: effect of atmosphere on product distribution and properties [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2150-2160. |
[5] | GU Zhipan, YANG Jichun, ZHANG Ye, TAO Leren, LIU Fanhan. Mathematical modelling of water sorption isotherms and thermodynamic properties of municipal sewage sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 998-1008. |
[6] | LI Yalin, LIU Lei, LI Kunpeng, LIN Kang, DOU Xue, BI Yajie. Preparation of spherical nano-CaO2 and its application in sludge deep-dewatering coupled with electro-osmotic [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 4047-4054. |
[7] | XU Jie, HUANG Qunxing, MENG Xiangdong, GAO Huaping. Effect of calcium-based additive on phosphorus form and bioavailability during hydrothermal carbonization of sewage sludge [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3507-3514. |
[8] | Wenyi DENG, Cong TAO, Shijuan TIAN, Andong YIN, Yaxin SU. Low temperature reduction of NO over sludge char prepared under different pyrolysis conditions [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 263-269. |
[9] | Yunbei LI, Tingting LIU, Jishao JIANG, Jinghua LYU. Nitrogen retention mechanism of in-situ nitrogen fixing agent in sludge composting process [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2876-2883. |
[10] | Xiaoyuan ZHENG, Zhengwei JIANG, Wei CHEN, Yutong YE, Zhi YING, Shasha JI, Bo WANG. Migration and transformation of phosphorus in sewage sludge during hydrothermal carbonization process [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 2017-2025. |
[11] | Jinxin ZHENG,Chunsheng QIU,Chenchen WANG,Nannan LIU,Dong WANG,Shaopo WANG,Liping SUN,Yifan ZHANG. Effects of Fenton treatment on sewage sludge dewaterability, heavy metal speciation and leaching efficiency [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 805-811. |
[12] | Yingying ZHAO, Xinyu WANG, Jiale LI, Hui JIN, Jun WANG, Zhiyong JI, Junsheng YUAN. Research progress on integration of seawater softening and carbon fixation and desulfurization of flue gas [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4315-4329. |
[13] | Zhenghao ZHAO,Wenguo XIANG,Shiyi CHEN,Shiwei MA,Min ZHU,Xinguo HUA. Performance of cobalt modified calcium sorbents for steam gasification of sewage sludge [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4747-4754. |
[14] | Wei ZHANG, Xiaoping CHEN, Qing WANG, Xujun YANG, Lian SONG, Ge ZHU, Jiliang MA, Daoyin LIU, Cai LIANG. Characteristics of sewage sludge medium-low temperature gasification and heavy metal migration in a fluidized bed reactor [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 2011-2021. |
[15] | LI Yalin, LIU Lei, LIU Xiaotong, HOU Jinjin, LI Xiaoran, CHU Yunpeng. Variation of extracellular polymeric substances in sewage sludge dewatering by coordination of electro-osmosis and ammonium persulfate [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4468-4475. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |