Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (4): 2150-2160.DOI: 10.16085/j.issn.1000-6613.2021-0810
• Resources and environmental engineering • Previous Articles Next Articles
WANG Siyi(), LI Yuehui, GE Yujie, WANG Huanran, ZHAO Lulu, LI Xianchun()
Received:
2021-04-16
Revised:
2021-05-22
Online:
2022-04-25
Published:
2022-04-23
Contact:
LI Xianchun
王思怡(), 李月慧, 葛玉洁, 王焕然, 赵璐璐, 李先春()
通讯作者:
李先春
作者简介:
王思怡(1987—),女,博士研究生,研究方向为固体废弃物处理技术与理论。E-mail:基金资助:
CLC Number:
WANG Siyi, LI Yuehui, GE Yujie, WANG Huanran, ZHAO Lulu, LI Xianchun. Gasification of sewage sludge and its model compounds with NTP-DBD: effect of atmosphere on product distribution and properties[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2150-2160.
王思怡, 李月慧, 葛玉洁, 王焕然, 赵璐璐, 李先春. NTP-DBD气化城市污泥及其模型化合物: 气氛对产物分布及特性的影响[J]. 化工进展, 2022, 41(4): 2150-2160.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0810
工业分析(质量分数)/% | 元素分析(质量分数)/% | |||||||
---|---|---|---|---|---|---|---|---|
Vd | FCd | Ad | Cd | Hd | Od① | Nd | Sd | |
38.38 | 3.65 | 57.97 | 17.03 | 3.08 | 16.83 | 2.90 | 2.19 |
工业分析(质量分数)/% | 元素分析(质量分数)/% | |||||||
---|---|---|---|---|---|---|---|---|
Vd | FCd | Ad | Cd | Hd | Od① | Nd | Sd | |
38.38 | 3.65 | 57.97 | 17.03 | 3.08 | 16.83 | 2.90 | 2.19 |
气氛 | 放电频率 /kHz | 放电功率P/W | 能量密度SED /J·L-1 | 输出电压 /kV | 气化率 /% | 最高温度 /℃ |
---|---|---|---|---|---|---|
Ar | 10.5 | 6.09 | 9128.38 | 16.2 | 3.75 | 92 |
Ar | 9.2 | 9.25 | 13881.25 | 22.0 | 18.77 | 160 |
N2 | 10.5 | 12.33 | 18489.99 | 24.0 | 22.79 | 217 |
CO2 | 10.5 | 13.06 | 20406.43 | 24.4 | 28.73 | 228 |
气氛 | 放电频率 /kHz | 放电功率P/W | 能量密度SED /J·L-1 | 输出电压 /kV | 气化率 /% | 最高温度 /℃ |
---|---|---|---|---|---|---|
Ar | 10.5 | 6.09 | 9128.38 | 16.2 | 3.75 | 92 |
Ar | 9.2 | 9.25 | 13881.25 | 22.0 | 18.77 | 160 |
N2 | 10.5 | 12.33 | 18489.99 | 24.0 | 22.79 | 217 |
CO2 | 10.5 | 13.06 | 20406.43 | 24.4 | 28.73 | 228 |
气氛 | 放电频率 /kHz | 放电功率P /W | 能量密度SED /J·L-1 | 输出电压 /kV | 最高温度 /℃ |
---|---|---|---|---|---|
Ar | 10.5 | 6.77/5.95 | 10149/11919 | 16.0/16.8 | 136/137 |
Ar | 9.2 | 12.28/11.27 | 18430/16912 | 22.4/22.8 | 167/181 |
N2 | 10.5 | 15.89/13.78 | 23841/20676 | 24.8/24.4 | 199/206 |
CO2 | 10.5 | 16.04/15.88 | 24060/23816 | 25.6/25.6 | 218/213 |
气氛 | 放电频率 /kHz | 放电功率P /W | 能量密度SED /J·L-1 | 输出电压 /kV | 最高温度 /℃ |
---|---|---|---|---|---|
Ar | 10.5 | 6.77/5.95 | 10149/11919 | 16.0/16.8 | 136/137 |
Ar | 9.2 | 12.28/11.27 | 18430/16912 | 22.4/22.8 | 167/181 |
N2 | 10.5 | 15.89/13.78 | 23841/20676 | 24.8/24.4 | 199/206 |
CO2 | 10.5 | 16.04/15.88 | 24060/23816 | 25.6/25.6 | 218/213 |
1 | RAHEEM A, SIKARWAR V S, HE J, et al. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: a review[J]. Chemical Engineering Journal, 2018, 337: 616-641. |
2 | 中国环保产业协会. 中国环保产业发展状况报告(2018)[EB/OL]. [2019-01-23]. . |
China Association of Environmental Protection Industry. A report on the development of environmental protection industry in China(2018)[EB/OL].[2019-01-23].. | |
3 | WANG C Q, WANG W L, LIN L T, et al. A stepwise microwave synergistic pyrolysis approach to produce sludge-based biochars: feasibility study simulated by laboratory experiments[J]. Fuel, 2020, 272: 117628. |
4 | NAQVI S R, TARIQ R, HAMEED Z, et al. Pyrolysis of high-ash sewage sludge: thermo-kinetic study using TGA and artificial neural networks[J]. Fuel, 2018, 233: 529-538. |
5 | KOENIG A, KAY J N, WAN I M. Physical properties of dewatered wastewater sludge for landfilling[J]. Water Science and Technology, 1996, 34(3/4): 533-540. |
6 | 杨明沁, 解立平, 岳俊楠, 等. 污水污泥气化焦油热解特性的研究[J]. 化工进展, 2015, 34(5): 1472-1478. |
YANG Mingqin, XIE Liping, YUE Junnan, et al. Study on the pyrolysis properties of the tars from sewage sludge gasification[J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1472-1478. | |
7 | BARRY D, BARBIERO C, BRIENS C, et al. Pyrolysis as an economical and ecological treatment option for municipal sewage sludge[J]. Biomass and Bioenergy, 2019, 122: 472-480. |
8 | BECKINGHAUSEN A, REYNDERS J, MERCKEL R, et al. Post-pyrolysis treatments of biochars from sewage sludge and A. Mearnsii for ammonia (NH4-N) recovery[J]. Applied Energy, 2020, 271: 115212. |
9 | BAO D D, LI Z W, LIU X, et al. Biochar derived from pyrolysis of oily sludge waste: structural characteristics and electrochemical properties[J]. Journal of Environmental Management, 2020, 268: 110734. |
10 | SONG Y Y, HU J W, LIU J Y, et al. CO2-assisted co-pyrolysis of textile dyeing sludge and hyperaccumulator biomass: dynamic and comparative analyses of evolved gases, bio-oils, biochars, and reaction mechanisms[J]. Journal of Hazardous Materials, 2020, 400: 123190. |
11 | FURNESS D T, HOGGETT L A, JUDD S J. Thermochemical treatment of sewage sludge[J]. Water and Environment Journal, 2000, 14(1): 57-65. |
12 | LIU Y, RAN C M, SIYAL A A, et al. Comparative study for fluidized bed pyrolysis of textile dyeing sludge and municipal sewage sludge[J]. Journal of Hazardous Materials, 2020, 396: 122619. |
13 | MANARA P, ZABANIOTOU A. Towards sewage sludge based biofuels via thermochemical conversion: a review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 2566-2582. |
14 | 屈广周, 李杰, 梁东丽, 等. 低温等离子体技术处理难降解有机废水的研究进展[J]. 化工进展, 2012, 31(3): 662-670. |
QU Guangzhou, LI Jie, LIANG Dongli, et al. Research progress in organic wastewater treatment by low-temperature plasma discharge technology[J]. Chemical Industry and Engineering Progress, 2012, 31(3): 662-670. | |
15 | HLINA M, HRABOVSKY M, KAVKA T, et al. Production of high quality syngas from argon/water plasma gasification of biomass and waste[J]. Waste Management, 2014, 34(1): 63-66. |
16 | SPYROU N, AMORIM J D. Atmospheric pressure DBD low-temperature plasma reactor for the treatment of sugarcane bagasse[J]. IEEE Transactions on Plasma Science, 2019, 47(3): 1583-1592. |
17 | DU C M, WU J, MA D Y, et al. Gasification of corn cob using non-thermal arc plasma[J]. International Journal of Hydrogen Energy, 2015, 40(37): 12634-12649. |
18 | 孙世翼. 放电等离子体强化处理污泥减量及重金属去除[D]. 兰州: 西北师范大学, 2018. |
SUN Shiyi. Discharge plasma enhanced sludge reduction and heavy metal removal[D]. Lanzhou: Northwest Normal University, 2018. | |
19 | 郑燕, 李明, 朱锡锋. 城市污水污泥催化快速热解制备芳香烃和烯烃[J]. 化工学报, 2016, 67(11): 4802-4807. |
ZHENG Yan, LI Ming, ZHU Xifeng. Fast catalytic pyrolysis of sewage sludge to produce aromatic hydrocarbons and olefins[J]. CIESC Journal, 2016, 67(11): 4802-4807. | |
20 | CHEN S S, DONG B, DAI X H, et al. Effects of thermal hydrolysis on the metabolism of amino acids in sewage sludge in anaerobic digestion[J]. Waste Management, 2019, 88: 309-318. |
21 | SUBRAHMANYAM P V R, AN C, SASTRY E, et al. Amino acids in sewage sludges[J]. Journal (Water Pollution Control Federation), 1960, 32(4): 344-350. |
22 | 张军. 微波热解污水污泥过程中氮转化途径及调控策略[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
ZHANG Jun. Nitrogen conversion and control of nitrogen-containing compounds during microwave pyrolysis of sewage sludge[D]. Harbin: Harbin Institute of Technology, 2013. | |
23 | AZADI P, AFIF E, FOROUGHI H, et al. Catalytic reforming of activated sludge model compounds in supercritical water using nickel and ruthenium catalysts[J]. Applied Catalysis B: Environmental, 2013, 134/135: 265-273. |
24 | WANG C Y, FAN Y J, HORNUNG U, et al. Char and tar formation during hydrothermal treatment of sewage sludge in subcritical and supercritical water: effect of organic matter composition and experiments with model compounds[J]. Journal of Cleaner Production, 2020, 242: 118586. |
25 | WEI F, CAO J P, ZHAO X Y, et al. Formation of aromatics and removal of nitrogen in catalytic fast pyrolysis of sewage sludge: a study of sewage sludge and model amino acids[J]. Fuel, 2018, 218: 148-154. |
26 | 宋长忠, 方梦祥, 余春江, 等. 杉木热解及燃烧特性热天平模拟试验研究[J]. 燃料化学学报, 2005, 33(1): 68-73. |
SONG Changzhong, FANG Mengxiang, YU Chunjiang, et al. Study on the characteristics of fir pyrolysis and combustion in thermal balance for simulating typical fire condition[J]. Journal of Fuel Chemistry and Technology, 2005, 33(1): 68-73. | |
27 | YIN Q Q, LIU M T, REN H P. Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water[J]. Journal of Environmental Management, 2019, 249: 109410. |
28 | MANYÀ J J. Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs[J]. Environmental Science & Technology, 2012, 46(15): 7939-7954. |
29 | AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere, 2014, 99: 19-33. |
30 | WESENBEECK S VAN, PRINS W, RONSSE F, et al. Sewage sludge carbonization for biochar applications. Fate of heavy metals[J]. Energy & Fuels, 2014, 28(8): 5318-5326. |
31 | 左薇. 污水污泥微波热解制取燃料及微晶玻璃工艺与机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. |
ZUO Wei. Research on utilization of sewage sludge to produce fuel and glass-ceramics by microwave pyrolysis[D]. Harbin: Harbin Institute of Technology, 2011. | |
32 | 于跃芹, 刘永军. 有机化学[M]. 2版. 北京: 科学出版社, 2018. |
YU Yueqin, LIU Yongjun. Organic chemistry[M]. 2nd ed. Beijing: Science Press, 2018. |
[1] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[2] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
[3] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[4] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[5] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[6] | YAO Liming, WANG Yazhuo, FAN Honggang, GU Qing, YUAN Haoran, CHEN Yong. Treatment status of kitchen waste and its research progress of pyrolysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3791-3801. |
[7] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[8] | ZHANG Shan, ZHONG Zhaoping, YANG Yuxuan, DU Haoran, LI Qian. Enrichment of heavy metals in pyrolysis of municipal solid waste by phosphate modified kaolin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3893-3903. |
[9] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing biofuels from soapstock via pyrolysis and subsequent catalytic vapor-phase hydrotreating process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2874-2883. |
[10] | ZHENG Xin, JIA Li, WANG Yanlin, ZHANG Jingchao, CHEN Shihu, QIAO Xiaolei, FAN Baoguo. Effect of sewage sludge mixed with coal slime on heavy metal retention characteristics [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3233-3241. |
[11] | XIU Haoran, WANG Yungang, BAI Yanyuan, ZOU Li, LIU Yang. Combustion characteristics and ash melting behavior of Zhundong coal/municipal sludge blended combustion [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3242-3252. |
[12] | LI Ruolin, HE Shaolin, YUAN Hongying, LIU Boyue, JI Dongli, SONG Yang, LIU Bo, YU Jiqing, XU Yingjun. Effect of in-situ pyrolysis on physical properties of oil shale and groundwater quality [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3309-3318. |
[13] | WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665. |
[14] | LIANG Yijing, MA Yan, LU Zhanfeng, QIN Fusheng, WAN Junjie, WANG Zhiyuan. Experimental investigation on the anti-coking performance of La1-x Sr x MnO3 perovskite coating [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1769-1778. |
[15] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |