Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (1): 255-264.DOI: 10.16085/j.issn.1000-6613.2022-0454
• Industrial catalysis • Previous Articles Next Articles
LIU Haicheng(), MENG Wushuang, HUANG Zhe, YOU Yu, HUA Ruiqi, CAO Mengru
Received:
2022-03-23
Revised:
2022-08-05
Online:
2023-02-20
Published:
2023-01-25
Contact:
LIU Haicheng
通讯作者:
刘海成
作者简介:
刘海成(1973—),男,副教授,硕士生导师,研究方向为水处理与回用技术。E-mail:hhua306@sohu.com。
基金资助:
CLC Number:
LIU Haicheng, MENG Wushuang, HUANG Zhe, YOU Yu, HUA Ruiqi, CAO Mengru. Preparation of WO3/BiOCl0.7I0.3 photocatalyst and its photocatalytic degradation mechanism[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 255-264.
刘海成, 孟无霜, 黄哲, 尤雨, 花瑞琪, 曹梦茹. WO3/BiOCl0.7I0.3光催化剂的制备及其光催化降解机理[J]. 化工进展, 2023, 42(1): 255-264.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0454
1 | YU Yanshuang, CHEN Longjun, FANG Yu, et al. High temperatures can effectively degrade residual tetracyclines in chicken manure through composting[J]. Journal of Hazardous Materials, 2019, 380: 120862. |
2 | DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: A review[J]. Environmental Chemistry Letters, 2013, 11(3): 209-227. |
3 | MAKOWSKA Nicoletta, KOCZURA Ryszard, MOKRACKA Joanna. Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water[J]. Chemosphere, 2016, 144: 1665-1673. |
4 | Henrik JOHANSSON C, JANMAR Lisa, BACKHAUS Thomas. Toxicity of ciprofloxacin and sulfamethoxazole to marine periphytic algae and bacteria[J]. Aquatic Toxicology, 2014, 156: 248-258. |
5 | WILLYARD Cassandra. Drug-resistant bacteria ranked[J]. Nature, 2017, 543(7643): 15. |
6 | XIAO Tingting, TANG Zheng, YANG Yong, et al. In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics[J]. Applied Catalysis B: Environmental, 2018, 220: 417-428. |
7 | PUDUKUDY Manoj, HETIEQA Ain, YAAKOB Zahira. Synthesis, characterization and photocatalytic activity of annealing dependent quasi spherical and capsule like ZnO nanostructures[J]. Applied Surface Science, 2014, 319: 221-229. |
8 | AN Xiaoqiang, YU Jimmy C, WANG Yu, et al. WO3nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing[J]. Journal of Materials Chemistry, 2012, 22(17): 8525-8531. |
9 | WEI Lijuan, ZHANG Haiming, CAO Jing. Electrospinning of Ag/ZnWO4/WO3 composite nanofibers with high visible light photocatalytic activity[J]. Materials Letters, 2019, 236: 171-174. |
10 | BI Qiang, GAO Yue, DANG Chenxuan, et al. Study on the photoelectrocatalytic performance of a WO3 thin film electrode by constructing a BiOI/WO3 heterojunction[J]. CrystEngComm, 2019, 21(44): 6744-6757. |
11 | DENG Fang, LUO Yingbo, LI Hui, et al. Efficient toxicity elimination of aqueous Cr(VI) by positively-charged BiOCl x I1- x, BiOBr x I1- x and BiOCl x Br1- x solid solution with internal hole-scavenging capacity via the synergy of adsorption and photocatalytic reduction[J]. Journal of Hazardous Materials, 2020, 383: 121127. |
12 | 马雄, 陈凯怡, 牛斌, 等. BiOCl0.9I0.1/β-Bi2O3复合材料在模拟太阳光下光催化降解盐酸四环素性能[J]. 催化学报, 2020, 41(10): 1535-1543. |
MA Xiong, CHEN Kaiyi, NIU Bin, et al. Preparation of BiOCl0.9I0.1/β-Bi2O3 composite for degradation of tetracycline hydrochloride under simulated sunlight[J]. Chinese Journal of Catalysis, 2020, 41(10):1535-1543. | |
13 | 陈厚望, 刘宏, 张鹏, 等. Ag3PO4/AgI光催化剂的制备及降解2-氨基-4-乙酰氨基苯甲醚机理[J]. 化工进展, 2021, 40(8): 4268-4277. |
CHEN Houwang, LIU Hong, ZHANG Peng, et al. Preparation of Ag3PO4/AgI photocatalyst and its mechanism of AMA degradation[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4268-4277. | |
14 | XIAO Yepeng, LIU Jincheng, Jijin MAI, et al. High-performance silver nanoparticles coupled with monolayer hydrated tungsten oxide nanosheets: the structural effects in photocatalytic oxidation of cyclohexane[J]. Journal of Colloid and Interface Science, 2018, 516: 172-181. |
15 | HUANG Hongwei, ZENG Chao, XIAO Ke, et al. Coupling of solid-solution and heterojunction in a 2D-1D core-shell-like BiOCl0.5I0.5/Bi5O7I hierarchy for promoting full-spectrum photocatalysis and molecular oxygen activation[J]. Journal of Colloid and Interface Science, 2017, 504: 257-267. |
16 | WANG Baoying, LI Lun, CHEN Jiakuan, et al. Synthesis of BiOCl0.5I0.5/TiO2 heterojunctions with enhanced visible-light photocatalytic properties[J]. Journal of Nanoparticle Research, 2018, 20(7): 1-13. |
17 | MAISANG Wachiraporn, PROMNOPAS Surin, KAOWPHONG Sulawan, et al. Microwave-assisted hydrothermal synthesis of BiOBr/BiOCl flowerlike composites used for photocatalysis[J]. Research on Chemical Intermediates, 2020, 46(4): 2117-2135. |
18 | LIU Zhangsheng, WANG Jinxiang. Face-to-face BiOCl/BiO2- x heterojunction composites with highly efficient charge separation and photocatalytic activity[J]. Journal of Alloys and Compounds, 2020, 832: 153771. |
19 | ZHANG Xia, WANG Daolei, MAN Xiaokun, et al. Influence of BiOIO3 morphology on the photocatalytic efficiency of Z-scheme BiOIO3/g-C3N4 heterojunctioned composite for Hg0 removal[J]. Journal of Colloid and Interface Science, 2020, 558: 123-136. |
20 | QI Yiling, ZHENG Yifan, SONG Xuchun. Synthesis and enhanced visible light photocatalytic activity of WO3-BiOCl x Br1- x heterojunctions with tunable energy band structure[J]. Ceramics International, 2017, 43(15): 12302-12310. |
21 | LI Bolun, SONG Haiyan, HAN Fuqin, et al. Photocatalytic oxidative desulfurization and denitrogenation for fuels in ambient air over Ti3C2/g-C3N4 composites under visible light irradiation[J]. Applied Catalysis B: Environmental, 2020, 269: 118845. |
22 | WANG Qizhao, HUI Juan, LI Jiajia, et al. Photodegradation of methyl orange with PANI-modified BiOCl photocatalyst under visible light irradiation[J]. Applied Surface Science, 2013, 283: 577-583. |
23 | LU Yun, SONG Jimei, LI Wenfang, et al. Preparation of BiOCl/Bi2S3 composites by simple ion exchange method for highly efficient photocatalytic reduction of Cr6+ [J]. Applied Surface Science, 2020, 506: 145000. |
24 | SHAMAILA Sajjad, SAJJAD Ahmed Khan Leghari, CHEN Feng, et al. WO3/BiOCl, a novel heterojunction as visible light photocatalyst[J]. Journal of Colloid and Interface Science, 2011, 356(2): 465-472. |
25 | PARK Yohan, NA Yulyi, PRADHAN Debabrata, et al. Adsorption and UV/Visible photocatalytic performance of BiOI for methyl orange, Rhodamine B and methylene blue: Ag and Ti-loading effects[J]. CrystEngComm, 2014, 16(15): 3155-3167. |
26 | Y Ashok Kumar REDDY, AJITHA B, SREEDHAR Adem, et al. Enhanced UV photodetector performance in bi-layer TiO2/WO3 sputtered films[J]. Applied Surface Science, 2019, 494: 575-582. |
27 | YUE Peng, ZHANG Guoqiang, CAO Xingzhong, et al. In situ synthesis of Z-scheme BiPO4/BiOCl0.9I0.1 heterostructure with multiple vacancies and valence for efficient photocatalytic degradation of organic pollutant[J]. Separation and Purification Technology, 2019, 213: 34-44. |
28 | Dávidné NAGY, FIRKALA Tamás, Eszter DROTÁR, et al. Photocatalytic WO3/TiO2 nanowires: WO3 polymorphs influencing the atomic layer deposition of TiO2 [J]. RSC Advances, 2016, 6(98): 95369-95377. |
29 | LI Chunmei, CHEN Gang, SUN Jingxue, et al. Ultrathin nanoflakes constructed erythrocyte-like Bi2WO6 hierarchical architecture via anionic self-regulation strategy for improving photocatalytic activity and gas-sensing property[J]. Applied Catalysis B: Environmental, 2015, 163: 415-423. |
30 | 黄文鑫, 魏虎, 蒋彩云, 等. Bi2MoO6/Bi2S3异质结光催化降解四环素-铜复合物[J]. 环境科学, 2020, 41(12): 5488-5499. |
HUANG Wenxin, WEI Hu, JIANG Caiyun, et al. Photocatalytic degradation of tetracycline and copper complex by Bi2MoO6/Bi2S3 heterojunction[J]. Environmental Science, 2020, 41(12): 5488-5499. | |
31 | XIAO Xin, WANG Yihui, BO Qiu, et al. One-step preparation of sulfur-doped porous g-C3N4 for enhanced visible light photocatalytic performance[J]. Dalton Transactions, 2020, 49(24): 8041-8050. |
32 | TANG Xiaolong, LIU Huanhuan, YANG Cai, et al. In-situ fabrication of Z-scheme CdS/BiOCl heterojunctions with largely improved photocatalytic performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599: 124880. |
33 | HU Yue, HAO Xuqiang, CUI Zhiwei, et al. Enhanced photocarrier separation in conjugated polymer engineered CdS for direct Z-scheme photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2020, 260: 118131. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[4] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[5] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[6] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[7] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[8] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[9] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[10] | ZHANG Zhiwei, YANG Weixin, ZHANG Junji. Recent progress of long-wavelength-light-driven photoswitches [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4058-4075. |
[11] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[12] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[13] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[14] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[15] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |