Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (1): 247-254.DOI: 10.16085/j.issn.1000-6613.2022-0513
• Industrial catalysis • Previous Articles Next Articles
DENG Shaobi(), BIAN Zhoufeng()
Received:
2022-03-29
Revised:
2022-06-21
Online:
2023-02-20
Published:
2023-01-25
Contact:
BIAN Zhoufeng
通讯作者:
边洲峰
作者简介:
邓少碧(1999—),女,硕士研究生,研究方向为催化重整制氢。E-mail:1984599571@qq.com。
基金资助:
CLC Number:
DENG Shaobi, BIAN Zhoufeng. Application of core-shell structure catalyst in dry reforming of methane[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 247-254.
邓少碧, 边洲峰. 核壳结构在甲烷干重整中的应用[J]. 化工进展, 2023, 42(1): 247-254.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0513
1 | GAO Wanlin, LIANG Shuyu, WANG Rujie, et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686. |
2 | 邵斌, 孙哲毅, 章云, 等. 二氧化碳转化为合成气及高附加值产品的研究进展[J]. 化工进展, 2022, 41(3): 1136-1151. |
SHAO Bin, SUN Zheyi, ZHANG Yun, et al. Recent progresses in CO2 to syngas and high value-added products[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1136-1151. | |
3 | 周伟, 成康, 张庆红, 等. 合成气转化中的接力催化[J]. 科学通报, 2021, 66(10): 1157-1169. |
ZHOU Wei, CHENG Kang, ZHANG Qinghong, et al. Relay catalysis in the conversion of syngas[J]. Chinese Science Bulletin, 2021, 66(10): 1157-1169. | |
4 | ZAIN M M, MOHAMED A R. An overview on conversion technologies to produce value added products from CH4 and CO2 as major biogas constituents[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 56-63. |
5 | 阮勇哲, 卢遥, 王胜平. 甲烷干重整Ni基催化剂失活及抑制失活研究进展[J]. 化工进展, 2018, 37(10): 3850-3857. |
RUAN Yongzhe, LU Yao, WANG Shengping. Progress in deactivation and anti-deactivation of nickel-based catalysts for methane dry reforming[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3850-3857. | |
6 | 林俊明, 岑洁, 李正甲, 等. Ni基重整催化剂失活机理研究进展[J]. 化工进展, 2022, 41(1): 201-209. |
LIN Junming, CEN Jie, LI Zhengjia, et al. Development on deactivation mechanism of Ni-based reforming catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 201-209. | |
7 | 史健, 祝星, 李孔斋, 等. 甲烷干重整及金属-载体相互作用[J]. 石油学报(石油加工), 2020, 36(6): 1407-1418. |
SHI Jian, ZHU Xing, LI Kongzhai, et al. Dry reforming of methane and metal-support interactions[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(6): 1407-1418. | |
8 | 郑幼松, 邹宗鹏, 吕莉, 等. 甲烷干重整抗失活镍基催化剂研究进展[J]. 天然气化工(C1化学与化工), 2021, 46(6): 1-8, 16. |
ZHENG Yousong, ZOU Zongpeng, Li LYU, et al. Research progress of anti-deactivation nickel based catalysts for dry reforming of methane[J]. Natural Gas Chemical Industry, 2021, 46(6): 1-8, 16. | |
9 | LI Xinyu, LI Di, TIAN Hao, et al. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles[J]. Applied Catalysis B: Environmental, 2017, 202: 683-694. |
10 | SORCAR S, DAS J, KOMARALA E P, et al. Design of coke-free methane dry reforming catalysts by molecular tuning of nitrogen-rich combustion precursors[J]. Materials Today Chemistry, 2022, 24: 100765. |
11 | SASSON B J, HE T, NESTLER E, et al. Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane[J]. Journal of Energy Chemistry, 2022, 68: 124-142. |
12 | TORREZ-HERRERA J J, KORILI S A, GIL A. Bimetallic (Pt-Ni) La-hexaaluminate catalysts obtained from aluminum saline slags for the dry reforming of methane[J]. Chemical Engineering Journal, 2022, 433: 133191. |
13 | AHMAD Y H, MOHAMED A T, KUMAR A, et al. Solution combustion synthesis of Ni/La2O3 for dry reforming of methane: Tuning the basicity via alkali and alkaline earth metal oxide promoters[J]. RSC Advances, 2021, 11(53): 33734-33743. |
14 | DELIR K N P, BEKHEET M F, BONMASSAR N, et al. Elucidating the role of earth alkaline doping in perovskite-based methane dry reforming catalysts[J]. Catalysis Science & Technology, 2022, 12(4): 1229-1244. |
15 | DAS S, PÉREZ-RAMÍREZ J, GONG J L, et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2 [J]. Chemical Society Reviews, 2020, 49(10): 2937-3004. |
16 | 蔡雨露, 田静卓, 张晓雪, 等. 镍基核壳结构催化剂的制备及其在甲烷二氧化碳催化重整中的应用[J]. 天然气化工(C1化学与化工), 2020, 45(1): 103-107. |
CAI Yulu, TIAN Jingzhuo, ZHANG Xiaoxue, et al. Preparation of nickel-based core-shell catalysts and their application in carbon dioxide reforming of methane[J]. Natural Gas Chemical Industry, 2020, 45(1): 103-107. | |
17 | ZHANG Junshe, LI Fanxing. Coke-resistant Ni@SiO2 catalyst for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2015, 176/177: 513-521. |
18 | PENG Honggen, ZHANG Xianhua, ZHANG Li, et al. One-pot facile fabrication of multiple nickel nanoparticles confined in microporous silica giving a multiple-cores@shell structure as a highly efficient catalyst for methane dry reforming[J]. ChemCatChem, 2017, 9(1): 127-136. |
19 | PANG Yijun, ZHONG Aihua, XU Zhijia, et al. How do core-shell structure features impact on the activity/stability of the Co-based catalyst in dry reforming of methane?[J]. ChemCatChem, 2018, 10(13): 2845-2857. |
20 | YANG Juanjuan, WANG Jiaqi, ZHAO Jingjing, et al. CO2 conversion via dry reforming of methane on a core-shell Ru@SiO2 catalyst[J]. Journal of CO2 Utilization, 2022, 57: 101893. |
21 | ZHAO Yu, LI Hui, LI Hexing. NiCo@SiO2 core-shell catalyst with high activity and long lifetime for CO2 conversion through DRM reaction[J]. Nano Energy, 2018, 45: 101-108. |
22 | LIU Wenming, LI Le, LIN Sixue, et al. Confined Ni-In intermetallic alloy nanocatalyst with excellent coking resistance for methane dry reforming[J]. Journal of Energy Chemistry, 2022, 65: 34-47. |
23 | BIAN Zhoufeng, KAWI Sibudjing. Sandwich-likesilica@Ni@silica multicore-shell catalyst for the low-temperature dry reforming of methane: Confinement effect against carbon formation[J]. ChemCatChem, 2018, 10(1): 320-328. |
24 | BIAN Z F, SURYAWINATA I Y, KAWI S. Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2016, 195: 1-8. |
25 | ZHAO Xiaoyuan, LI Hongrui, ZHANG Jianping, et al. Design and synthesis of NiCe@m-SiO2 yolk-shell framework catalysts with improved coke-and sintering-resistance in dry reforming of methane[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2447-2456. |
26 | LI Ziwei, MO Liuye, KATHIRASER Yasotha, et al. Yolk-satellite-shell structured Ni-Yolk@Ni@SiO2 nanocomposite: Superb catalyst toward methane CO2 reforming reaction[J]. ACS Catalysis, 2014, 4(5): 1526-1536. |
27 | PANG Yijun, DOU Yixuan, ZHONG Aihua, et al. Nanostructured Ru-Co@SiO2: Highly efficient yet durable for CO2 reforming of methane with a desirable H2/CO ratio[J]. Applied Catalysis A: General, 2018, 555: 27-35. |
28 | WANG Changzhen, WU Hao, Xiangyu JIE, et al. Yolk-shell nanocapsule catalysts as nanoreactors with various shell structures and their diffusion effect on the CO2 reforming of methane[J]. ACS Applied Materials & Interfaces, 2021, 13(27): 31699-31709. |
29 | LI Yunhua, WANG Yaquan, ZHANG Xiangwen, et al. Thermodynamic analysis of autothermal steam and CO2 reforming of methane[J]. International Journal of Hydrogen Energy, 2008, 33(10): 2507-2514. |
30 | CHAI Ruijuan, ZHAO Guofeng, ZHANG Zhiqiang, et al. High sintering-/coke-resistance Ni@SiO2/Al2O3/FeCrAl-fiber catalyst for dry reforming of methane: One-step, macro-to-nano organization via cross-linking molecules[J]. Catalysis Science & Technology, 2017, 7(23): 5500-5504. |
31 | NAKAMURA J, AIKAWA K, SATO K, et al. Role of support in reforming of CH4 with CO2 over Rh catalysts[J]. Catalysis Letters, 1994, 25(3/4): 265-270. |
32 | HUANG Qiong, FANG Xiuzhong, CHENG Qinzhen, et al. Synthesis of a highly active and stable nickel-embedded alumina catalyst for methane dry reforming: On the confinement effects of alumina shells for nickel nanoparticles[J]. ChemCatChem, 2017, 9(18): 3563-3571. |
33 | BAKTASH E, LITTLEWOOD P, SCHOMäCKER R, et al. Alumina coated nickel nanoparticles as a highly active catalyst for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2015, 179: 122-127. |
34 | WANG S B, LU G Q, MILLAR G J. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art[J]. Energy & Fuels, 1996, 10(4): 896-904. |
35 | GOULD T, IZAR A, WEIMER A, et al. Stabilizing Ni catalysts by molecular layer deposition for harsh, dry reforming conditions[J]. ACS Catalysis, 2014, 4: 2714-2717. |
36 | ZHAO Yu, KANG Yunqing, LI Hui, et al. CO2 conversion to synthesis gas via DRM on the durable Al2O3/Ni/Al2O3 sandwich catalyst with high activity and stability[J]. Green Chemistry, 2018, 20(12): 2781-2787. |
37 | DAI Hui, ZHU Yongqing, XIONG Siqi, et al. Dry reforming of methane over Ni/MgO@Al catalysts with unique features of sandwich structure[J]. Chemistryselect, 2021, 6(48): 13862-13872. |
38 | HAN J W, PARK J S, CHOI M S, et al. Uncoupling the size and support effects of Ni catalysts for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2017, 203: 625-632. |
39 | TANG Chengli, LV Liping, ZHANG Limei, et al. High carbon-resistance Ni@CeO2 core-shell catalysts for dry reforming of methane[J]. Kinetics and Catalysis, 2017, 58(6): 800-808. |
40 | HAN Kaihang, YU Weishu, XU Leilei, et al. Reducing carbon deposition and enhancing reaction stability by ceria for methane dry reforming over Ni@SiO2@CeO2 catalyst[J]. Fuel, 2021, 291: 120182. |
41 | LI Ziwei, SIBUDJING Kawi. Facile synthesis of multi-Ni-core@Ni phyllosilicate@CeO2 shell hollow spheres with high oxygen vacancy concentration for dry reforming of CH4 [J]. ChemCatChem, 2018, 10(14): 2994-3001. |
42 | 任枭雄, 邱泽刚, 李志勤. ZrO2制备方法研究进展[J]. 煤化工, 2021, 49(1): 18-22. |
REN Xiaoxiong, QIU Zegang, LI Zhiqin. Research progress on preparation method of ZrO2 [J]. Coal Chemical Industry, 2021, 49(1): 18-22. | |
43 | DOU Jian, ZHANG Riguang, HAO Xiaobin, et al. Sandwiched SiO2@Ni@ZrO2 as a coke resistant nanocatalyst for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2019, 254: 612-623. |
44 | DAI Chengyi, ZHANG Shaohua, ZHANG Anfeng, et al. Hollow zeolite encapsulated Ni-Pt bimetals for sintering and coking resistant dry reforming of methane[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(32): 16461-16468. |
[1] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[4] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[5] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[6] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[13] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[14] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[15] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |