Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (2): 521-532.DOI: 10.16085/j.issn.1000-6613.2019-0785
• Industrial catalysis • Previous Articles Next Articles
Wenhua ZHANG1,2(),Liwen DIAN2,Haiyan CHEN2,Wenhua YE1,2,Xiaofeng HU1,2,Huihu WANG1,2(),Ying CHANG1,2,Xinguo MA3,Shijie DONG1,2
Received:
2019-05-14
Online:
2020-03-12
Published:
2020-02-05
Contact:
Huihu WANG
张文华1,2(),佃丽雯2,陈海燕2,叶文华1,2,胡晓峰1,2,王辉虎1,2(),常鹰1,2,马新国3,董仕节1,2
通讯作者:
王辉虎
作者简介:
张文华(1994—),男,硕士研究生,研究方向为光电催化。E-mail:基金资助:
CLC Number:
Wenhua ZHANG,Liwen DIAN,Haiyan CHEN,Wenhua YE,Xiaofeng HU,Huihu WANG,Ying CHANG,Xinguo MA,Shijie DONG. Improvement on the photoelectrocatalytic performance of tungsten oxide(WO3) thin film and its application prospects[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 521-532.
张文华,佃丽雯,陈海燕,叶文华,胡晓峰,王辉虎,常鹰,马新国,董仕节. 氧化钨(WO3)薄膜光电催化性能的改善及应用[J]. 化工进展, 2020, 39(2): 521-532.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0785
1 | LEWIS N S. A prospective on energy and environmental science[J]. Energy & Environmental Science, 2019, 12(2): 343-362. |
2 | BYRANVAND M M, KIM T, SONG S, et al. P-type CuI islands on TiO2 electron transport layer for a highly efficient planar perovskite solar cell with negligible hysteresis[J]. Advanced Energy Materials, 2018, 8(5): 1702235. |
3 | VAIANO V, MATARANGOLO M, MURCIA J J, et al. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag[J]. Applied Catalysis B: Environmental, 2018, 225: 197-206. |
4 | JIANG Z F, WAN W M, LI H M, et al. A hierarchical Z-scheme alpha-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction[J]. Advanced Materials, 2018, 30(10): 1706108. |
5 | ZHOU Y G, ZHANG S, DING Y, et al. Efficient solar energy harvesting and storage through a robust photocatalyst driving reversible redox reactions[J]. Advanced Materials, 2018, 30(31): 1802294. |
6 | 尹莉, 陈德良, 李涛, 等. 贵金属/WO3复合纳米晶的气敏与光催化研究进展[J]. 化工进展, 2012, 31(1): 133-143. |
YIN L, CHEN D L, LI T, et al. Recent progress in noble metal/WO3 composite nanostructures for gas-sensing and photocatalytic applications[J]. Chemical Industry and Engineering Progress, 2012, 31(1): 133-143. | |
7 | KIM T H, HASANI A, LE Q V, et al. NO2 sensing properties of porous Au-incorporated tungsten oxide thin films prepared by solution process[J]. Sensors and Actuators B: Chemical, 2019, 286: 512-520. |
8 | TSAI T H, LIN C T. Rapid preparation of WO3 nanorods via microwave-assisted solvothermal synthesis[J]. Synthesis and Reactivity in Inorganic Metal, 2015, 45(11): 1655-1659. |
9 | SHI Y D, ZHANG Y, TANG K, et al. Designed growth of WO3/PEDOT core/shell hybrid nanorod arrays with modulated electrochromic properties[J]. Chemical Engineering Journal, 2019, 355: 942-951. |
10 | YAMAZAKI S, SHIMIZU D, TANI S, et al. Effect of dispersants on photochromic behavior of tungsten oxide nanoparticles in methylcellulose[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19889-19896. |
11 | LIANG Y, YANG Y, ZOU C W, et al. 2D ultra-thin WO3 nanosheets with dominant {002} crystal facets for high-performance xylene sensing and methyl orange photocatalytic degradation[J]. Journal of Alloys and Compounds, 2019, 783: 848-854. |
12 | HUANG Y, LI Y, ZHANG G Y, et al. Simple synthesis of 1D, 2D and 3D WO3 nanostructures on stainless steel substrate for high-performance supercapacitors[J]. Journal of Alloys and Compounds, 2019, 778: 603-611. |
13 | GHESHIAGHI M G, SEIFZADEH D, SHOGHI P, et al. Electroless Ni-P/nano-WO3 coating and its mechanical and corrosion protection properties[J]. Journal of Alloys and Compounds, 2018, 769: 149-160. |
14 | ZENG Q Y, GAO Y W, LAI L, et al. Highly improving photoelectrocatalytic efficiency and stability of WO3 photoanodes by facile in situ growth of TiO2 branch overlayers[J]. Nanoscale, 2018, 10(28): 13393-13401. |
15 | ROGER I, SHIPMAN M A, SYMES M D. Earth abundant catalysts for electrochemical and photoelectrochemical water splitting[J]. Nature Reviews Chemistry, 2017, 1: 1-13. |
16 | SOLTANI T, TAYYEBI A, LEE B K, Sonochemical driven ultrafast facile synthesis of WO3 nanoplates with controllable morphology and oxygen vacancies for efficient photoelectrochemical water splitting[J]. Ultrasonics Sonochemistry,2019, 50: 230-238. |
17 | YANG Y H, XIE R R, LI H, et al. Photoelectrocatalytic reduction of CO2 into formic acid using WO3-x/TiO2 film as novel photoanode[J]. Transaction of Nonferrous Metals Society of China, 2016, 26(9): 2390-2396. |
18 | HUNGE Y M, YADAV A A, MAHADIK M A, et al. A highly efficient visible-light responsive sprayed WO3/FTO photoanode for photoelectrocatalytic degradation of brilliant blue[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85: 273-281. |
19 | ZHAN F Q, XIE R R, LI W Z, et al. In situ synthesis of g-C3N4/WO3 heterojunction plates array films with enhanced photoelectrochemical performance[J]. RSC Advances, 2015, 5(85): 69753-69760. |
20 | ZHENG F, GUO M, ZHANG M. Hydrothermal preparation and optical properties of orientation-controlled WO3 nanorod arrays on ITO substrates[J]. Crystengcomm, 2013, 15(2): 277-284. |
21 | LU H, YAN Y, ZHANG M, et al. The effects of adjusting pulse anodization parameters on the surface morphology and properties of a WO3 photoanode for photoelectrochemical water splitting[J]. Journal of Solid State Electrochemistry, 2018, 22(7): 2169-2181. |
22 | FERNANDEZ-DOMENE R M, SANCHEZ-TOVAR R, LUCAS-GRANADOS B, et al. Visible light photoelectrodegradation of diuron on WO3 nanostructures[J]. Journal of Environmental Management, 2018, 226: 249-255. |
23 | DONG Z Z, CASSANDRA D E, KEA B H. Investigating oxidation growth routes in the flame synthesis of tungsten-oxide nanowires from tungsten substrates[J]. Combustion and Flame, 2018, 195: 311-321. |
24 | XU S, FU D G, SONG K, et al. One dimensional WO3/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting[J]. Chemical Engineering Journal, 2018, 349: 368-375. |
25 | MA Z M, HOU H L, SONG K, et al. Ternary WO3/porous-BiVO4/FeOOH hierarchical architectures: towards highly efficient photoelectrochemical performance[J]. Chemelectrochem, 2018, 5(23): 3660-3667. |
26 | GEORGIEVA J, SOTIROPOULOS S, VALOVA E, et al. Pt doped TiO2/WO3 bilayer catalysts on graphite substrates with enhanced photoelectrocatalytic activity for methanol oxidation under visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346: 70-76. |
27 | KONG Y, SUN H, FAN W, et al. Enhanced photoelectrochemical performance of tungsten oxide film by bifunctional Au nanoparticles[J]. RSC Advances, 2017, 7(25): 15201-15210. |
28 | LI D, TAKEUCHI R, CHANDRA D, et al. Prominent performance for visible-light-driven water oxidation on an in situ N2-intercalated WO3 nanorod photoanode synthesized by a dual functional structure directing agent[J]. Chemsuschem, 2018, 11(7): 1151-1156. |
29 | CORIDAN R H, SHANER M, WIGGENHORM C, et al. Electrical and photoelectrochemical properties of WO3/Si tandem photoelectrodes[J]. Journal of Physical Chemistry C, 2013, 117(14): 6949-6957. |
30 | LI N X, TENG H C, ZHANG L, et al. Synthesis of Mo-doped WO3 nanosheets with enhanced visible light-driven photocatalytic properties[J]. RSC Advances, 2015, 5(115):95394-95400. |
31 | KALANUR S S, HWANG Y J, CHAE S Y, et al. Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity[J]. Journal of Materials Chemistry A, 2013, 1(10): 3479-3488. |
32 | WANG P, YANG L, DAI B, et al. Nanoplate-like tungsten trioxide (hydrate) films prepared by crystal-seed-assisted hydrothermal reaction[J]. International Journal of Modern Physics B, 2017, 31: 1744072. |
33 | REYES-GIL K R, WIGGENHORN C, BRUNSCHWIG B S, et al. Comparison between the quantum yields of compact and porous WO3 photoanodes[J]. Journal of Physical Chemistry C, 2013, 117(29): 14947-14957. |
34 | WANG F G, DI VALENTIN C, PACCHIONI G. Doping of WO3 for photocatalytic water splitting: hints from density functional theory[J]. Journal of Physical Chemistry C, 2012, 116(16): 8901-8909. |
35 | LIU Y Y, LI Y, LI W Z, et al. Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light[J]. Applied Surface Science, 2012, 258(12): 5038-5045. |
36 | COLE B, MARSEN B, MILLER E, et al. Evaluation of nitrogen doping of tungsten oxide for photoelectrochemical water splitting[J]. Journal of Physical Chemistry C, 2008, 112(13): 5213-5220. |
37 | LI D, CHANDRA D, TAKEUCHI R, et al. Dual-functional surfactant-templated strategy for synthesis of an in-situ N2-intercalated mesoporous WO3 photoanode for efficient visible light driven water oxidation[J]. Chemistry-A European Journal, 2017, 23(27): 6596-6604. |
38 | SHEIN I R, IVANOVSKII A L. Ab initio probing of the electronic band structure and Fermi surface of fluorine-doped WO3, as a novel low-Tc. superconductor[J]. Jetp Letters, 2012, 95(2): 66-69. |
39 | YANG Y, JIN G, LI H. Photoelectrochemical properties and photocatalytic activity of fluorine-doped plate-like WO3 from hydrothermal radio-frequency (RF) sputtered tungsten thin films[J]. Nano, 2017, 12(4): 1750041. |
40 | LI D, HUANG W Q, XIE Z, et al. Mechanism of enhanced photocatalytic activities on tungsten trioxide doped with sulfur: dopant-type effects[J]. Modern Physics Letters B, 2016, 30(27): 1650340. |
41 | ALEXANDER J E, KLAVETTER K C, LIN J F, et al. Improved visible light harvesting of WO3 by incorporation of sulfur or iodine: a tale of two Impurities[J]. Chemistry of Materials, 2014, 26(4): 1670-1677. |
42 | BARCZUK P J, KROLIKOWSKA A, LEWERA A, et al. Structural and photoelectrochemical investigation of boron-modified nanostructured tungsten trioxide films[J]. Electrochimica Acta, 2013, 104(8): 282-288. |
43 | ZHANG T, ZHU Z, CHEN H, et al. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study[J]. Nanoscale, 2015, 7(7): 2933-2940. |
44 | SONG K, MA Z, YANG W, et al. Electrospinning WO3 nanofibers with tunable Fe-doping levels towards efficient photoelectrochemical water splitting[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(10): 8338-8346. |
45 | XIAO Y H, XU C Q, ZHANG W D. Facile synthesis of Ni-doped WO3 nanoplate arrays for effective photoelectrochemical water splitting[J]. Journal of Solid State Electrochemistry, 2017, 21(11): 3355-3364. |
46 | KALANUR S S, SEO H. Influence of molybdenum doping on the structural, optical and electronic properties of WO3 for improved solar water splitting[J]. Journal of Colloid and Interface Science, 2018, 509: 440-447. |
47 | KALANUR S S, SEO H. Aligned nanotriangles of tantalum doped tungsten oxide for improved photoelectrochemical water splitting[J]. Journal of Alloys and Compounds, 2019, 785: 1097-1105. |
48 | LIU Y, LI J, LI W, et al. Enhancement of the photoelectrochemical performance of WO3 vertical arrays film for solar water splitting by gadolinium doping[J]. Journal of Physical Chemistry C, 2015, 119(27): 14834-14842. |
49 | 姜子龙. Co-Pi/WO3纳米片光电极的制备及其光电协同降解苯酚[J]. 化工技术与开发, 2017, 46(5): 43-46. |
JIANG Z L. Synthesis of Co-Pi/WO3 nanosheet photoanode and its photoelectrocatalytic degradation of phenol[J]. Technology Development of Chemical Industry, 2017, 46(5): 43-46. | |
50 | ZHANG H W, WANG Y Y, ZHU X G, et al. Bilayer Au nanoparticle-decorated WO3 porous thin films: on-chip fabrication and enhanced NO2 gas sensing performances with high selectivity[J]. Sensors and Actuators B: Chemical, 2019, 280: 192-200. |
51 | MIU D, BIRJEGA R, VIESPE C. Surface acousticwave hydrogen sensors based on nanostructured Pd/WO3 bilayers[J]. Sensors, 2018, 18(11): 3636. |
52 | BOSE R J, IllYASUKUTTY N, TAN K S, et al. Preparation and characterization of Pt loaded WO3 films suitable for gas sensing applications[J]. Applied Surface Science, 2018, 440: 320-330. |
53 | COSTA M J S, COSTA G S, LIMA A E B, et al. Investigation of charge recombination lifetime in γ-WO3 films modified with Ag0 and Pt0 nanoparticles and its influence on photocurrent density[J]. Ionics, 2018, 24: 3291-3297. |
54 | RAMKUMAR S, RAJARAJAN G. Enhanced visible light photocatalytic activity of pristine and silver (Ag) doped WO3 nanostructured thin films[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(11): 12185-12192. |
55 | LEE W J, SHINDE P S, GO G H, et al. Ag grid induced photocurrent enhancement in WO3 photoanodes and their scale-up performance toward photoelectrochemical H2 generation[J]. International Journal of Hydrogen Energy, 2011, 36(9): 5262-5270. |
56 | YAO M N, JIA X, LIU Y, et al. Surface plasmon resonance enhanced polymer solar cells by thermally evaporating Au into buffer layer[J]. ACS Applied Materials & Interfaces, 2015, 7(33): 18866-18871. |
57 | KIM H N, MINGGU L J, JAAFAR N A, et al. Enhanced plasmonic photoelectrochemical response of Au sandwiched WO3 photoanodes[J]. Solar Energy Materials and Solar Cells, 2017, 172: 361-367. |
58 | LEE B R, LEE M G, PARK H, et al. All-solution-processed WO3/BiVO4 core-shell nanorod arrays for highly stable photoanodes[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20004-20012. |
59 | ZHAO W F, WANG X W, MA L Z, et al. WO3/p-type-GR layered materials for promoted photocatalytic antibiotic degradation and device for mechanism insight[J]. Nanoscale Research Letters, 2019, 14: 146. |
60 | MA Z Z, SONG K, WANG L, et al. WO3/BiVO4 type-II heterojunction arrays decorated with oxygen-deficient ZnO passivation layer: a highly efficient and stable photoanode[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 889-897. |
61 | HUANG W C, WANG J X, BIAN L, et al. Oxygen vacancy induces self-doping effect and metalloid LSPR in non-stoichiometric tungsten suboxide synergistically contributing to the enhanced photoelectrocatalytic performance of WO3-x/TiO2-x heterojunction[J]. Physical Chemistry Chemical Physics, 2018, 20(25): 17268-17278. |
62 | XIE T, ZHENG T, WANG R L, et al. A promising CuOx/WO3 p-n heterojunction thin-film photocathode fabricated by magnetron reactive sputtering[J]. International Journal of Hydrogen Energy, 2019, 44(8): 4062-4071. |
63 | HU Z F, XU M K, SHEN Z R, et al. A nanostructured chromium (Ⅲ) oxide/tungsten (Ⅵ) oxide p-n junction photoanode toward enhanced efficiency for water oxidation[J]. Journal of Materials Chemistry A, 2015, 3(26): 14046-14053. |
64 | RONG F, WANG Q Y, LU Q F, et al. Rational fabrication of hierarchical Z-scheme WO3/Bi2WO6 nanotubes for superior photoelectrocatalytic reaction[J]. Chemistryselect, 2019, 4(9): 2676-2684. |
65 | WANG C H, QIN D D, SHAN D L, et al. Assembly of g-C3N4-based type Ⅱ and Z-scheme heterojunction anodes with improved charge separation for photoelerojuncion water oxidation[J]. Physical Chemistry Chemical Physics, 2017, 19(6): 4507-4515. |
66 | KEVIN S. Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis[J]. Journal of Physical Chemistry Letters, 2013, 4(10): 1624-1633. |
67 | HISATOMI T, KUBOTA J, DOMEN K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting[J]. Chemical Society Reviews, 2014, 43(22): 7520-7535. |
68 | CHEN X P, ZHANG Z X, CHI L N, et al. Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems[J]. Nano-Micro Letters, 2016, 8(1): 1-12. |
69 | 苏进展, 李明涛, 郭烈锦. 超声喷雾热分解WO3薄膜的光电化学制氢研究[J]. 西安交通大学学报, 2008, 42(5): 617-621. |
SU J Z, LI M T, GUO L J. Characterization of ultrasonic spray pyrolysis deposited WO3 thin film for Photoelectrochemical splitting of water[J]. Journal of Xi'an Jiaotong University, 2008, 42(5): 617-621. | |
70 | SU J Z, GUO L J, BAO N Z, et al. Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting[J]. Nano Letters, 2011, 11(5): 1928-1933. |
71 | TAYYEBEH S, AHMAD T, HYEONSEON H, et al. A novel growth control of nanoplates WO3 photoanodes with dual oxygen and tungsten vacancies for efficient photoelectrochemical water splitting performance[J]. Solar Energy Materials and Solar Cells, 2019, 191: 39-49. |
72 | FAN X L, WANG T, XUE H R, et al. Synthesis of tungsten trioxide/hematite core-shell nanoarrays for efficient photoelectrochemical water splitting[J]. Chemelectrochem, 2019, 6(2): 543-551. |
73 | SHAO M F, NING F Y, WEI M, et al. Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting[J]. Advanced Functional Materials, 2014, 24(5): 580-586. |
74 | CHEMELEWSKI W D, LEE H C, LIN J F, et al. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting[J]. Journal of the American Chemical Society, 2014, 136(7): 2843-2850. |
75 | 王冰, 赵美明, 周勇, 等. 光催化还原二氧化碳制备太阳燃料研究进展及挑战[J]. 中国科学: 技术科学, 2017(3): 70-80. |
WANG B, ZHAO M M, ZHOU Y, et al. Recent progress and challenges in research of photocatalytic reduction of CO2 to solar fuels[J]. Scientia Sinica: Techologica, 2017(3): 70-80. | |
76 | CHANG X X, WANG T G, GONG J L. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts[J]. Energy & Environmental Science, 2016, 9(7): 2177-2196. |
77 | ZHANG N, LONG R, GAO C, et al. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels[J]. Science China Materials, 2018, 61(6): 771-805. |
78 | LIU W H, YANG Y H, ZHAN F Q, et al. Ultrafast fabrication of nanostructure WO3 photoanodes by hybrid microwave annealing with enhanced photoelectrochemical and photoelectrocatalytic activities[J]. International Journal of Hydrogen Energy, 2018, 43(18): 8770-8778. |
79 | ZHAN F Q, LIU W H, LI W Z, et al. Boric acid assisted synthesis of WO3 nanostructures with highly reactive (002) facet and enhanced photoelectrocatalytic activity[J]. Journal of Materials Science-Materials in Electronics, 2017, 28(18): 13836-13845. |
80 | YANG Y H, ZHAN F Q, LI H, et al. In situ Sn-doped WO3 films with enhanced photoelectrochemical performance for reducing CO2 into formic acid[J]. Journal of Solid State Electrochemistry, 2017, 21(8): 2231-2240. |
81 | MOHITE S V, GANBAVLE V V, RAJPURE K Y. Solar photoelectrocatalytic activities of rhodamine-B using sprayed WO3 photoelectrode[J]. Journal of Alloys and Compounds, 2016, 655: 106-113. |
82 | HUNGE Y M, YADAV A A, MAHADIK M A, et al. A highly efficient visible-light responsive sprayed WO3/FTO photoanode for photoelectrocatalytic degradation of brilliant blue[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85: 273-281. |
83 | WEN J, LIU C J, DU Y, et al. Enhanced photocatalytic degradation of methyl orange by CdS quantum dots sensitized platelike WO3 photoelectrodes[J]. Journal of Central South University, 2015, 22(12): 4551-4559. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[6] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[10] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |