Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (10): 5445-5458.DOI: 10.16085/j.issn.1000-6613.2022-2168
• Resources and environmental engineering • Previous Articles Next Articles
SU Jingzhen1(), ZHAN Jian2,3()
Received:
2022-11-22
Revised:
2023-02-08
Online:
2023-11-11
Published:
2023-10-15
Contact:
ZHAN Jian
通讯作者:
詹健
作者简介:
苏景振(1998-),男,硕士研究生,研究方向为水处理技术。E-mail:1141748597@qq.com。
基金资助:
CLC Number:
SU Jingzhen, ZHAN Jian. Research progress of microplastic removal from water environment by biochar[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5445-5458.
苏景振, 詹健. 生物炭对水环境中微塑料的去除研究进展[J]. 化工进展, 2023, 42(10): 5445-5458.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2168
主要形状分布 | 主要(微)塑料种类 | 化学式 | 密度/g·cm-3 | 结晶度/% | 主要产生途径 | 参考文献 |
---|---|---|---|---|---|---|
碎片、薄膜类 | 聚乙烯(PE) | [C2H4] n | 0.91~0.97 | 55~95[ | 工程包装材料、薄膜制品等领域 | [ |
聚丙烯(PP) | [C3H6] n | 0.90~0.91 | 38.4[ | 食品包装器具、服装、管道和车辆零部件等领域 | ||
聚酰胺(PA) | [NH-R-CO] x | 1.04~1.14 | 30~40[ | 工业涂料、树脂、纺织业等领域 | ||
纤维类 | 聚对苯二甲酸乙二醇酯(PET) | [C10H12O6] n | 1.37~1.38 | 0.5[ | 电子元件、机械工业等领域 | |
聚氯乙烯(PVC) | [C2H3Cl] n | 1.35~1.45 | 5~10[ | 管、线材料等领域 | ||
泡沫颗粒类 | 聚苯乙烯(PS) | [C8H8] n | 1.04~1.07 | 3.7[ | 化妆品、泡沫塑料制品等领域 |
主要形状分布 | 主要(微)塑料种类 | 化学式 | 密度/g·cm-3 | 结晶度/% | 主要产生途径 | 参考文献 |
---|---|---|---|---|---|---|
碎片、薄膜类 | 聚乙烯(PE) | [C2H4] n | 0.91~0.97 | 55~95[ | 工程包装材料、薄膜制品等领域 | [ |
聚丙烯(PP) | [C3H6] n | 0.90~0.91 | 38.4[ | 食品包装器具、服装、管道和车辆零部件等领域 | ||
聚酰胺(PA) | [NH-R-CO] x | 1.04~1.14 | 30~40[ | 工业涂料、树脂、纺织业等领域 | ||
纤维类 | 聚对苯二甲酸乙二醇酯(PET) | [C10H12O6] n | 1.37~1.38 | 0.5[ | 电子元件、机械工业等领域 | |
聚氯乙烯(PVC) | [C2H3Cl] n | 1.35~1.45 | 5~10[ | 管、线材料等领域 | ||
泡沫颗粒类 | 聚苯乙烯(PS) | [C8H8] n | 1.04~1.07 | 3.7[ | 化妆品、泡沫塑料制品等领域 |
水环境介质 | 采样地点(位置)和年份 | 主要微塑料成分(粒径分布) | 主要形状 | 平均丰度水平(采集网/膜) | 参考文献 |
---|---|---|---|---|---|
海洋 | 大西洋(表层海水),2015 | PET、PA(0.25~0.5mm) | 纤维(94%) | (1.15±1.45)颗粒/m3(曼塔拖网,333μm) | [ |
美国南加州太平洋(表层海水),2001 | —(0.35~4.7mm) | 碎片(92.7%以上) | 7.25颗粒/m3(曼塔拖网,333μm) | [ | |
中国东海,2014 | —(0.5~5mm,91.2%) | 纤维(83.2%) | (0.167±0.138)颗粒/m3(Neuston网,333μm) | [ | |
韩国东南海,2012 | PE、PP、PS、PET(2~5mm) | 纤维(17.48%~35.52%)、 薄膜(20.47%~39.78%) | 1.92~5.51颗粒/m3;2.3~38.77颗粒/m3(曼塔拖网,330μm) | [ | |
印度洋南非东南部(海滩沉积物、冲浪带水域),2014 | PS等(0.065~5mm) | 纤维(90%)、碎片 | (688.9±348.2)~(3308±1449)颗粒/m3; (257.9±53.36)~(1215±276.7)颗粒/m3 (WP-2 type网,80μm) | [ | |
河湖 | 英国塔马尔河 (河口地表水),2012 | PE、PP、PS(>270μm) | 碎片 | 0.028颗粒/m3(曼塔拖网,300μm) | [ |
中国太湖,2014 | PET、PP、PE (100~1000μm) | 纤维 | 3400~25800颗粒/m3(尼龙浮游生物网,333μm) | [ | |
汉江、长江部分河段,2016 | PET、PP(<2mm,80%) | 纤维 | (1660.0±639.1)~(8925±1591)颗粒/m3(不锈钢筛网,50μm) | [ | |
中国洞庭湖、洪湖(表层水),2014 | PE、PP(<2mm,80%) | 纤维 | 1250~4650颗粒/m3(不锈钢筛网,50μm) | [ | |
德国莱茵河(表层水),2015 | PS、PE(300~1000μm) | 碎片、球状 | 693颗粒/m3(—) | [ | |
饮用水 | 德国饮用水处理厂 (地下30m水井),2014 | PE、PA、PET、PVC、EP (50~150μm) | 纤维、碎片 | 0~7颗粒/m3(不锈钢筒式过滤器,3μm) | [ |
中国部分地区自来水,2020 | PE、PP(<50μm) | 碎片(53.85%~100%)、 纤维(1.13%~30.77%)、 球体(2.27%~36.36%) | (0.440±0.275)颗粒/m3[黑色聚碳酸酯(PC)膜,0.2μm] | [ | |
捷克共和国饮用水处理厂,2018 | PET、PP、PE (<10μm,95%) | 碎片、纤维 | (0.338±0.076)~(0.628±0.028)颗粒/m3[聚四氟乙烯(PTFE)膜,0.2μm] | [ | |
中国塑料/玻璃瓶(饮料/啤酒),2022 | PS、PP(300~1000μm) | 碎片、准球形 | 10颗粒/mL、20~80颗粒/mL(—) | [ |
水环境介质 | 采样地点(位置)和年份 | 主要微塑料成分(粒径分布) | 主要形状 | 平均丰度水平(采集网/膜) | 参考文献 |
---|---|---|---|---|---|
海洋 | 大西洋(表层海水),2015 | PET、PA(0.25~0.5mm) | 纤维(94%) | (1.15±1.45)颗粒/m3(曼塔拖网,333μm) | [ |
美国南加州太平洋(表层海水),2001 | —(0.35~4.7mm) | 碎片(92.7%以上) | 7.25颗粒/m3(曼塔拖网,333μm) | [ | |
中国东海,2014 | —(0.5~5mm,91.2%) | 纤维(83.2%) | (0.167±0.138)颗粒/m3(Neuston网,333μm) | [ | |
韩国东南海,2012 | PE、PP、PS、PET(2~5mm) | 纤维(17.48%~35.52%)、 薄膜(20.47%~39.78%) | 1.92~5.51颗粒/m3;2.3~38.77颗粒/m3(曼塔拖网,330μm) | [ | |
印度洋南非东南部(海滩沉积物、冲浪带水域),2014 | PS等(0.065~5mm) | 纤维(90%)、碎片 | (688.9±348.2)~(3308±1449)颗粒/m3; (257.9±53.36)~(1215±276.7)颗粒/m3 (WP-2 type网,80μm) | [ | |
河湖 | 英国塔马尔河 (河口地表水),2012 | PE、PP、PS(>270μm) | 碎片 | 0.028颗粒/m3(曼塔拖网,300μm) | [ |
中国太湖,2014 | PET、PP、PE (100~1000μm) | 纤维 | 3400~25800颗粒/m3(尼龙浮游生物网,333μm) | [ | |
汉江、长江部分河段,2016 | PET、PP(<2mm,80%) | 纤维 | (1660.0±639.1)~(8925±1591)颗粒/m3(不锈钢筛网,50μm) | [ | |
中国洞庭湖、洪湖(表层水),2014 | PE、PP(<2mm,80%) | 纤维 | 1250~4650颗粒/m3(不锈钢筛网,50μm) | [ | |
德国莱茵河(表层水),2015 | PS、PE(300~1000μm) | 碎片、球状 | 693颗粒/m3(—) | [ | |
饮用水 | 德国饮用水处理厂 (地下30m水井),2014 | PE、PA、PET、PVC、EP (50~150μm) | 纤维、碎片 | 0~7颗粒/m3(不锈钢筒式过滤器,3μm) | [ |
中国部分地区自来水,2020 | PE、PP(<50μm) | 碎片(53.85%~100%)、 纤维(1.13%~30.77%)、 球体(2.27%~36.36%) | (0.440±0.275)颗粒/m3[黑色聚碳酸酯(PC)膜,0.2μm] | [ | |
捷克共和国饮用水处理厂,2018 | PET、PP、PE (<10μm,95%) | 碎片、纤维 | (0.338±0.076)~(0.628±0.028)颗粒/m3[聚四氟乙烯(PTFE)膜,0.2μm] | [ | |
中国塑料/玻璃瓶(饮料/啤酒),2022 | PS、PP(300~1000μm) | 碎片、准球形 | 10颗粒/mL、20~80颗粒/mL(—) | [ |
生物炭 类型 | 制备方法 | 表面参数 | 目标微塑料(粒径,初始浓度) | 吸附动力学模型(R2) | 吸附等温线 模型(R2) | 吸附平衡时间 | 最大吸附 容量(Qm) /mg·g-1 | 主要吸附机理 | 参考文献 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
比表面积 /m2·g-1 | 总孔隙体积 /cm3·g-1 | 平均孔径 /nm | |||||||||
污泥 | 650℃热解 | — | — | — | PET(6.5μm,0.5g/L) | 拟一级0.832 拟二级0.832 | — | 6h | 0.008 | 物理吸附 | [ |
秸秆 | 拟一级0.709 拟二级0.679 | 6h | 0.004 | ||||||||
梧桐皮 | 拟一级0.845 拟二级0.689 | 4h | 0.008 | ||||||||
苏格兰松 | 475℃慢热解3h(原始),800℃ 蒸汽活化3.5h | 454~615 | 0.165~0.2 | <2 | PE(10μm,4g/L) | — | — | — | 200 | 物理截留/粒子内扩散 | [ |
云杉树皮 | 185~369 | 0.071~0.132 | |||||||||
玉米芯 | 500℃热解/酸 氧化改性 | 17.8/36.9 | 0.04/0.09 | 7.31/7.07 | PS(50nm,1g/L) | 拟一级0.86 拟二级0.96 | Langmuir 0.97 Freundlich 0.88 | 4h内/8h内 | 16/18 | 疏水作用、 静电相互作用、孔隙填充、 氢键 | [ |
700℃热解/酸 氧化改性 | 34.5/48.2 | 0.06/0.11 | 9.12/8.82 | 拟一级0.93 拟二级0.98 | Langmuir 0.98 Freundlich 0.94 | ||||||
900℃热解/酸 氧化改性 | 36.3/40.8 | 0.06/0.13 | 9.79/9.09 | 拟一级0.97 拟二级0.98 | Langmuir 0.98 Freundlich 0.92 | ||||||
松木锯末 | 475℃慢热解2h(原始) | 405.76 | 0.19 | 1.86 | PS(1μm,0.1g/L) | 拟一级0.9996 | Langmuir 0.929 Freundlich 0.919 | 5h内 | 374.57 | 静电相互作用、表面络合作用 | [ |
475℃慢热解2h,金属Mg改性 | 265.47 | 0.41 | 3.83 | 拟一级0.9991 | Langmuir 0.897 Freundlich 0.877 | 334.03 | |||||
475℃慢热解2h,金属Zn改性 | 329.87 | 0.34 | 3.83 | 拟一级0.9991 | Langmuir 0.939 Freundlich 0.915 | 355.72 | |||||
生物质 材料 | 500℃、热解2h,金属Fe改性 | 164.6 | 0.12 | 5.2 | PS(1μm,0.01g/L) | 拟一级>0.95 拟二级>0.99 | Langmuir>0.95 Freundlich>0.88 | <10min | 290.2 | 静电相互作用、表面络合作用 | [ |
850℃热解2h,金属Fe改性 | 302.9 | 0.18 | 3.4 | 拟一级>0.98 拟二级>0.98 | Langmuir>0.93 Freundlich>0.85 | ||||||
甘蔗渣 | 350℃热解 | 1.44 | — | — | PS(<500nm,0.5g/L) | 拟一级0.99 拟二级0.96 | Langmuir 0.939 Freundlich 0.915 | <5min | 44.9 | 静电相互作用/粒子内扩散 | [ |
550℃热解 | 88.18 | Langmuir 0.939 Freundlich 0.915 | 32.6 | ||||||||
750℃热解 | 540.36 | Langmuir 0.939 Freundlich 0.915 | 26.7 | ||||||||
玉米芯 | 预处理6h,650℃热解 | 216.01 | 0.22 | 4.58 | PS(100nm,0.02g/L) | 拟一级0.99 拟二级0.98 | Langmuir 0.91 Freundlich 0.90 | 12h | 56.02 | 静电相互作用、氢键、疏水相互作用 | [ |
生物炭 类型 | 制备方法 | 表面参数 | 目标微塑料(粒径,初始浓度) | 吸附动力学模型(R2) | 吸附等温线 模型(R2) | 吸附平衡时间 | 最大吸附 容量(Qm) /mg·g-1 | 主要吸附机理 | 参考文献 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
比表面积 /m2·g-1 | 总孔隙体积 /cm3·g-1 | 平均孔径 /nm | |||||||||
污泥 | 650℃热解 | — | — | — | PET(6.5μm,0.5g/L) | 拟一级0.832 拟二级0.832 | — | 6h | 0.008 | 物理吸附 | [ |
秸秆 | 拟一级0.709 拟二级0.679 | 6h | 0.004 | ||||||||
梧桐皮 | 拟一级0.845 拟二级0.689 | 4h | 0.008 | ||||||||
苏格兰松 | 475℃慢热解3h(原始),800℃ 蒸汽活化3.5h | 454~615 | 0.165~0.2 | <2 | PE(10μm,4g/L) | — | — | — | 200 | 物理截留/粒子内扩散 | [ |
云杉树皮 | 185~369 | 0.071~0.132 | |||||||||
玉米芯 | 500℃热解/酸 氧化改性 | 17.8/36.9 | 0.04/0.09 | 7.31/7.07 | PS(50nm,1g/L) | 拟一级0.86 拟二级0.96 | Langmuir 0.97 Freundlich 0.88 | 4h内/8h内 | 16/18 | 疏水作用、 静电相互作用、孔隙填充、 氢键 | [ |
700℃热解/酸 氧化改性 | 34.5/48.2 | 0.06/0.11 | 9.12/8.82 | 拟一级0.93 拟二级0.98 | Langmuir 0.98 Freundlich 0.94 | ||||||
900℃热解/酸 氧化改性 | 36.3/40.8 | 0.06/0.13 | 9.79/9.09 | 拟一级0.97 拟二级0.98 | Langmuir 0.98 Freundlich 0.92 | ||||||
松木锯末 | 475℃慢热解2h(原始) | 405.76 | 0.19 | 1.86 | PS(1μm,0.1g/L) | 拟一级0.9996 | Langmuir 0.929 Freundlich 0.919 | 5h内 | 374.57 | 静电相互作用、表面络合作用 | [ |
475℃慢热解2h,金属Mg改性 | 265.47 | 0.41 | 3.83 | 拟一级0.9991 | Langmuir 0.897 Freundlich 0.877 | 334.03 | |||||
475℃慢热解2h,金属Zn改性 | 329.87 | 0.34 | 3.83 | 拟一级0.9991 | Langmuir 0.939 Freundlich 0.915 | 355.72 | |||||
生物质 材料 | 500℃、热解2h,金属Fe改性 | 164.6 | 0.12 | 5.2 | PS(1μm,0.01g/L) | 拟一级>0.95 拟二级>0.99 | Langmuir>0.95 Freundlich>0.88 | <10min | 290.2 | 静电相互作用、表面络合作用 | [ |
850℃热解2h,金属Fe改性 | 302.9 | 0.18 | 3.4 | 拟一级>0.98 拟二级>0.98 | Langmuir>0.93 Freundlich>0.85 | ||||||
甘蔗渣 | 350℃热解 | 1.44 | — | — | PS(<500nm,0.5g/L) | 拟一级0.99 拟二级0.96 | Langmuir 0.939 Freundlich 0.915 | <5min | 44.9 | 静电相互作用/粒子内扩散 | [ |
550℃热解 | 88.18 | Langmuir 0.939 Freundlich 0.915 | 32.6 | ||||||||
750℃热解 | 540.36 | Langmuir 0.939 Freundlich 0.915 | 26.7 | ||||||||
玉米芯 | 预处理6h,650℃热解 | 216.01 | 0.22 | 4.58 | PS(100nm,0.02g/L) | 拟一级0.99 拟二级0.98 | Langmuir 0.91 Freundlich 0.90 | 12h | 56.02 | 静电相互作用、氢键、疏水相互作用 | [ |
80 | TONG Meiping, HE Lei, RONG Haifeng, et al. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe3O4-biochar amendment[J]. Water Research, 2020, 169: 115284. |
81 | HASSAN M, LIU Y J, NAIDU R, et al. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis[J]. Science of the Total Environment, 2020, 744: 140714. |
82 | 王一飞, 李淼, 于海瀛, 等. 微塑料对环境中有机污染物吸附解吸的研究进展[J]. 生态毒理学报, 2019, 14(4): 23-30. |
WANG Yifei, LI Miao, YU Haiying, et al. Research progress on the adsorption and desorption between microplastics and environmental organic pollutants[J]. Asian Journal of Ecotoxicology, 2019, 14(4): 23-30. | |
83 | FAN Xiulei, ZOU Yefeng, GENG Nan, et al. Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process[J]. Journal of Hazardous Materials, 2021, 401: 123363. |
84 | HOSSAIN M R, JIANG M, WEI Q H, et al. Microplastic surface properties affect bacterial colonization in freshwater[J]. Journal of Basic Microbiology, 2019, 59(1): 54-61. |
85 | HADRI H EL, GIGAULT J, MAXIT B, et al. Nanoplastic from mechanically degraded primary and secondary microplastics for environmental assessments[J]. NanoImpact, 2020, 17: 100206. |
86 | GUPTA G K, RAM M, BALA R, et al. Pyrolysis of chemically treated corncob for biochar production and its application in Cr(Ⅵ) removal[J]. Environmental Progress & Sustainable Energy, 2018, 37(5): 1606-1617. |
87 | 陈雅兰, 孙可, 高博. 微塑料吸附机制研究进展[J]. 环境化学, 2021, 40(8): 2271-2287. |
CHEN Yalan, SUN Ke, GAO Bo. Sorption behavior, mechanisms, and models of organic pollutants and metals on microplastics: A review[J]. Environmental Chemistry, 2021, 40(8): 2271-2287. | |
88 | SUN Cuizhu, WANG Zhenggang, CHEN Lingyun, et al. Fabrication of robust and compressive chitin and graphene oxide sponges for removal of microplastics with different functional groups[J]. Chemical Engineering Journal, 2020, 393: 124796. |
89 | 莫礼键, 郑烈龙, 荣可, 等. 柚子皮多孔碳材料的制备及对聚氯乙烯微塑料废水的吸附效果研究[J]. 现代农业科技, 2021(24): 120-121. |
MO Lijian, ZHENG Lielong, RONG Ke, et al. Preparation of porous carbon material from pomelo peel and its adsorption effect on PVC microplastic wastewater[J]. Modern Agricultural Science and Technology, 2021(24): 120-121. | |
90 | 刘海朱, 王隽媛, 路思远, 等. 微塑料对有机污染物的吸附及微塑料-有机物复合污染的毒性研究进展[J]. 环境生态学, 2020, 2(12): 89-94. |
LIU Haizhu, WANG Junyuan, LU Siyuan, et al. Research progress on adsorption of organic pollutants by microplastics and toxicity of microplastic-organic compound pollution[J]. Environmental Ecology, 2020, 2(12): 89-94. | |
91 | CHU Xianxian, LI Tiantian, LI Zhen, et al. Transport of microplastic particles in saturated porous media[J]. Water, 2019, 11(12): 2474. |
92 | WANG Xiaoxia, DAN Yitong, DIAO Yinzhu, et al. Transport characteristics of polystyrene microplastics in saturated porous media with biochar/Fe3O4-biochar under various chemical conditions[J]. Science of the Total Environment, 2022, 847: 157576. |
93 | LI Yang, WANG Xinjie, FU Wanyi, et al. Interactions between nano/micro plastics and suspended sediment in water: Implications on aggregation and settling[J]. Water Research, 2019, 161: 486-495. |
94 | ALIMI O S, BUDARZ J F, HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1704-1724. |
95 | SINGH N, TIWARI E, KHANDELWAL N, et al. Understanding the stability of nanoplastics in aqueous environments: Effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals[J]. Environmental Science: Nano, 2019, 6(10): 2968-2976. |
96 | PALANSOORIYA K N, SANG Mee Kyung, IGALAVITHANA A D, et al. Biochar alters chemical and microbial properties of microplastic-contaminated soil[J]. Environmental Research, 2022, 209: 112807. |
97 | HAN Lanfang, ZHANG Biao, LI Detian, et al. Co-occurrence of microplastics and hydrochar stimulated the methane emission but suppressed nitrous oxide emission from a rice paddy soil[J]. Journal of Cleaner Production, 2022, 337: 130504. |
98 | HAN Lanfang, CHEN Liying, LI Detian, et al. Influence of polyethylene terephthalate microplastic and biochar co-existence on paddy soil bacterial community structure and greenhouse gas emission[J]. Environmental Pollution, 2022, 292: 118386. |
99 | TAN Mingxia, ZHANG Haitong, CHI Jie. Responses of bioavailability and degradation of phenanthrene in soils with or without earthworms to the addition of mixed particles of biochar and polyethylene[J]. Journal of Soils and Sediments, 2022, 22(1): 185-195. |
1 | GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. |
2 | BORRELLE S B, ROCHMAN C M, MAX L, et al. Opinion: Why we need an international agreement on marine plastic pollution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(38): 9994-9997. |
3 | THOMPSON R C, YLVA O, MITCHELL R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304(5672): 838. |
4 | XU B L, LIU F, CRYDER Z, et al. Microplastics in the soil environment: Occurrence, risks, interactions and fate—A review[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(21): 2175-2222. |
5 | 孙晓晨, 易琳雅, 汪楠, 等. 微塑料在饮用水中的去除研究进展[J]. 环境科学与技术, 2021, 44(6): 211-218. |
SUN Xiaochen, YI Linya, WANG Nan, et al. Research progress on the removal of microplastics in drinking water[J]. Environmental Science & Technology, 2021, 44(6): 211-218. | |
6 | LIU Peng, QIAN Li, WANG Hanyu, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes[J]. Environmental Science & Technology, 2019, 53(7): 3579-3588. |
7 | 李瑞, 李宁, 梁澜, 等. 水环境中微塑料去除技术的研究进展[J]. 水处理技术, 2022, 48(2): 1-5. |
LI Rui, LI Ning, LIANG Lan, et al. Research progress on removal methods of microplastics from aquatic environment[J]. Technology of Water Treatment, 2022, 48(2): 1-5. | |
8 | CHELLASAMY G, KIRIYANTHAN R M, MAHARAJAN T, et al. Remediation of microplastics using bionanomaterials: A review[J]. Environmental Research, 2022, 208: 112724. |
9 | 朱高坚, 陈李栋, 段晟, 等. 生物质材料对微纳塑料吸附性能的研究进展[J]. 复合材料学报, 2023, 40(2): 637-648. |
ZHU Gaojian, CHEN Lidong, DUAN Yu, et al. Research progress of adsorption properties of biomass materials on microplastics[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 637-648. | |
10 | MANYÀ J J. Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs[J]. Environmental Science & Technology, 2012, 46(15): 7939-7954. |
11 | 李湘萍, 张建光. 生物质热解制备多孔炭材料的研究进展[J]. 石油学报(石油加工), 2020, 36(5): 1101-1110. |
LI Xiangping, ZHANG Jianguang. Progress on biochar preparation through pyrolysis process[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(5): 1101-1110. | |
12 | MADADI R, BESTER K. Fungi and biochar applications in bioremediation of organic micropollutants from aquatic media[J]. Marine Pollution Bulletin, 2021, 166: 112247. |
13 | 张伟明, 修立群, 吴迪, 等. 生物炭的结构及其理化特性研究回顾与展望[J]. 作物学报, 2021, 47(1): 1-18. |
ZHANG Weiming, XIU Liqun, WU Di, et al. Review of biochar structure and physicochemical properties[J]. Acta Agronomica Sinica, 2021, 47(1): 1-18. | |
14 | 王昆, 林坤德, 袁东星. 环境样品中微塑料的分析方法研究进展[J]. 环境化学, 2017, 36(1): 27-36. |
WANG Kun, LIN Kunde, YUAN Dongxing. Research progress on the analysis of microplastics in the environment[J]. Environmental Chemistry, 2017, 36(1): 27-36. | |
15 | 陈兴兴, 刘敏, 陈滢. 淡水环境中微塑料污染研究进展[J]. 化工进展, 2020, 39(8): 3333-3343. |
CHEN Xingxing, LIU Min, CHEN Ying. Microplastics pollution in freshwater environment[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3333-3343. | |
16 | DING Ning, AN Di, YIN Xiufeng, et al. Detection and evaluation of microbeads and other microplastics in wastewater treatment plant samples[J]. Environmental Science and Pollution Research, 2020, 27(13): 15878-15887. |
17 | BIRCH Q T, POTTER P M, PINTO P X, et al. Sources, transport, measurement and impact of nano and microplastics in urban watersheds[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(2): 275-336. |
18 | BLÄSING M, AMELUNG W. Plastics in soil: Analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612: 422-435. |
19 | HÜFFER T, PRAETORIUS A, WAGNER S, et al. Microplastic exposure assessment in aquatic environments: Learning from similarities and differences to engineered nanoparticles[J]. Environmental Science & Technology, 2017, 51(5): 2499-2507. |
20 | 李明媛, 陈启晴, 刘学敏, 等. 微塑料吸附有机污染物的研究进展[J]. 环境化学, 2022, 41(4): 1101-1113. |
LI Mingyuan, CHEN Qiqing, LIU Xuemin, et al. Research progress on sorption of organic pollutants by microplastics[J]. Environmental Chemistry, 2022, 41(4): 1101-1113. | |
21 | TANG Shuai, LIN Lujian, WANG Xuesong, et al. Pb(Ⅱ) uptake onto nylon microplastics: Interaction mechanism and adsorption performance[J]. Journal of Hazardous Materials, 2020, 386: 121960. |
22 | LIN Zhukela, HU Yiwei, YUAN Yijun, et al. Comparative analysis of kinetics and mechanisms for Pb(Ⅱ) sorption onto three kinds of microplastics[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111451. |
23 | ZHOU Ziqing, SUN Yiran, WANG Yayi, et al. Adsorption behavior of Cu(Ⅱ) and Cr(Ⅵ) on aged microplastics in antibiotics-heavy metals coexisting system[J]. Chemosphere, 2022, 291: 132794. |
24 | DONG Youming, GAO Minling, SONG Zhengguo, et al. As(Ⅲ) adsorption onto different-sized polystyrene microplastic particles and its mechanism[J]. Chemosphere, 2020, 239: 124792. |
25 | 褚献献, 郑波, 何楠, 等. 微塑料与污染物相互作用的研究进展[J]. 环境化学, 2021, 40(2): 427-435. |
CHU Xianxian, ZHENG Bo, HE Nan, et al. Progress on the interaction between microplastics and contaminants[J]. Environmental Chemistry, 2021, 40(2): 427-435. | |
26 | 耿凤. 微塑料在全球水体及沉积物中的分布及污染特征[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
GENG Feng. Distribution and characteristics of microplastics in global water and sediments[D]. Harbin: Harbin Institute of Technology, 2020. | |
27 | 陈国栋, 刘海成, 孟无霜, 等. 微塑料老化的人工干预及理化特性表征研究进展[J]. 化工进展, 2022, 41(12): 6443-6453. |
CHEN Guodong, LIU Haicheng, MENG Wushuang, et al. Research progress on artificial intervention and characterization of physicochemical properties of microplastics aging[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6443-6453. | |
28 | 徐擎擎, 张哿, 邹亚丹, 等. 微塑料与有机污染物的相互作用研究进展[J]. 生态毒理学报, 2018, 13(1): 40-49. |
XU Qingqing, ZHANG Ge, ZOU Yadan, et al. Interactions between microplastics and organic pollutants: Current status and knowledge gaps[J]. Asian Journal of Ecotoxicology, 2018, 13(1): 40-49. | |
29 | RAHMAN A, SARKAR A, YADAV O P, et al. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: A scoping review[J]. Science of the Total Environment, 2021, 757: 143872. |
30 | KANHAI LA D K, OFFICER R, LYASHEVSKA O, et al. Microplastic abundance, distribution and composition along a latitudinal gradient in the Atlantic Ocean[J]. Marine Pollution Bulletin, 2017, 115(1/2): 307-314. |
31 | MOORE C J, MOORE S L, WEISBERG S B, et al. A comparison of neustonic plastic and zooplankton abundance in southern California’s coastal waters[J]. Marine Pollution Bulletin, 2002, 44(10): 1035-1038. |
32 | ZHAO Shiye, ZHU Lixin, WANG Teng, et al. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution[J]. Marine Pollution Bulletin, 2014, 86(1/2): 562-568. |
33 | KANG Jung-Hoon, KWON Oh-Youn, SHIM Won Joon. Potential threat of microplastics to zooplanktivores in the surface waters of the southern sea of Korea[J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3): 340-351. |
34 | NEL H A, FRONEMAN P W. A quantitative analysis of microplastic pollution along the south-eastern coastline of South Africa[J]. Marine Pollution Bulletin, 2015, 101(1): 274-279. |
35 | SADRI S S, THOMPSON R C. On the quantity and composition of floating plastic debris entering and leaving the Tamar Estuary, Southwest England[J]. Marine Pollution Bulletin, 2014, 81(1): 55-60. |
36 | SU Lei, XUE Yingang, LI Lingyun, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution, 2016, 216: 711-719. |
37 | WANG W F, NDUNGU A W, LI Z, et al. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China[J]. Science of the Total Environment, 2017, 575: 1369-1374. |
38 | WANG Wenfeng, YUAN Wenke, CHEN Yuling, et al. Microplastics in surface waters of Dongting Lake and Hong Lake, China[J]. Science of the Total Environment, 2018, 633: 539-545. |
39 | MANI T, HAUK A, WALTER U, et al. Microplastics profile along the Rhine River[J]. Scientific Reports, 2016, 5: 17988. |
40 | MINTENIG S M, LÖDER M G J, PRIMPKE S, et al. Low numbers of microplastics detected in drinking water from ground water sources[J]. Science of the Total Environment, 2019, 648: 631-635. |
41 | TONG Huiyan, JIANG Qianyi, HU Xingshuai, et al. Occurrence and identification of microplastics in tap water from China[J]. Chemosphere, 2020, 252: 126493. |
42 | PIVOKONSKY M, CERMAKOVA L, NOVOTNA K, et al. Occurrence of microplastics in raw and treated drinking water[J]. Science of the Total Environment, 2018, 643: 1644-1651. |
43 | LI Yinan, PENG Lin, FU Jianxin, et al. A microscopic survey on microplastics in beverages: The case of beer, mineral water and tea[J]. The Analyst, 2022, 147(6): 1099-1105. |
44 | TEKMAN M B, WEKERLE C, LORENZ C, et al. Tying up loose ends of microplastic pollution in the Arctic: Distribution from the sea surface through the water column to deep-sea sediments at the HAUSGARTEN observatory[J]. Environmental Science & Technology, 2020, 54(7): 4079-4090. |
45 | AVES A R, REVELL L E, GAW S, et al. First evidence of microplastics in Antarctic snow[J]. The Cryosphere, 2022, 16(6): 2127-2145. |
46 | CLERE I K, AHMMED F, REMOTO P III J G, et al. Quantification and characterization of microplastics in commercial fish from southern New Zealand[J]. Marine Pollution Bulletin, 2022, 184: 114121. |
47 | WU Di, FENG Yudong, WANG Rui, et al. Pigment microparticles and microplastics found in human thrombi based on Raman spectral evidence[J]. Journal of Advanced Research, 2023, 49: 141-150. |
48 | RAGUSA A, NOTARSTEFANO V, SVELATO A, et al. Raman microspectroscopy detection and characterisation of microplastics in human breastmilk[J]. Polymers, 2022, 14(13): 2700. |
49 | RAGUSA A, SVELATO A, SANTACROCE C, et al. Plasticenta: First evidence of microplastics in human placenta[J]. Environment International, 2021, 146: 106274. |
50 | 贾其隆, 陈浩, 赵昕, 等. 大型城市污水处理厂处理工艺对微塑料的去除[J]. 环境科学, 2019, 40(9): 4105-4112. |
JIA Qilong, CHEN Hao, ZHAO Xin, et al. Removal of microplastics by different treatment processes in Shanghai large municipal wastewater treatment plants[J]. Environmental Science, 2019, 40(9): 4105-4112. | |
51 | ZHANG Xiaolei, CHEN Jiaxin, LI Ji. The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to pollutants association[J]. Chemosphere, 2020, 251: 126360. |
52 | SHAHI N K, MAENG M, KIM D H, et al. Removal behavior of microplastics using alum coagulant and its enhancement using polyamine-coated sand[J]. Process Safety and Environmental Protection, 2020, 141: 9-17. |
53 | WANG Zhifeng, LIN Tao, CHEN Wei. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP)[J]. Science of the Total Environment, 2020, 700: 134520. |
54 | RAMIREZ L, GENTILE S R, ZIMMERMANN S, et al. Comparative study of the effect of aluminum chloride, sodium alginate and chitosan on the coagulation of polystyrene micro-plastic particles[J]. Journal of Colloid Science and Biotechnology, 2016, 5(2): 190-198. |
55 | 许龙, 王志峰. 某水厂中微塑料的赋存及去除特性[J]. 净水技术, 2020, 39(7): 109-113. |
XU Long, WANG Zhifeng. Occurrence and removal of microplastics in a water treatment plant[J]. Water Purification Technology, 2020, 39(7): 109-113. | |
56 | LARES M, NCIBI M C, SILLANPÄÄ M, et al. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology[J]. Water Research, 2018, 133: 236-246. |
57 | Xuan-Thanh BUI, Thi-Dieu-Hien VO, NGUYEN Phuong-Thao, et al. Microplastics pollution in wastewater: Characteristics, occurrence and removal technologies[J]. Environmental Technology & Innovation, 2020, 19: 101013. |
58 | POERIO T, PIACENTINI E, MAZZEI R. Membrane processes for microplastic removal[J]. Molecules, 2019, 24(22): 4148. |
59 | HIDAYATURRAHMAN H, LEE Tae-Gwan. A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process[J]. Marine Pollution Bulletin, 2019, 146: 696-702. |
60 | SOL D, LACA A, LACA A, et al. Approaching the environmental problem of microplastics: Importance of WWTP treatments[J]. Science of the Total Environment, 2020, 740: 140016. |
61 | FREEMAN S, BOOTH A M, SABBAH I, et al. Between source and sea: The role of wastewater treatment in reducing marine microplastics[J]. Journal of Environmental Management, 2020, 266: 110642. |
62 | TIWARI E, SINGH N, KHANDELWAL N, et al. Application of Zn/Al layered double hydroxides for the removal of nano-scale plastic debris from aqueous systems[J]. Journal of Hazardous Materials, 2020, 397: 122769. |
63 | YEN Pei-Ling, HSU Ching-Hsuan, HUANG Meilun, et al. Removal of nano-sized polystyrene plastic from aqueous solutions using untreated coffee grounds[J]. Chemosphere, 2022, 286: 131863. |
64 | GHAFFAR A, GHOSH S, LI Fangfang, et al. Effect of biochar aging on surface characteristics and adsorption behavior of dialkyl phthalates[J]. Environmental Pollution, 2015, 206: 502-509. |
65 | LIU Wujun, JIANG Hong, YU Hanqing. Development of biochar-based functional materials: Toward a sustainable platform carbon material[J]. Chemical Reviews, 2015, 115(22): 12251-12285. |
66 | TOMCZYK A, SOKOŁOWSKA Z, BOGUTA P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects[J].Reviews in Environmental Science and Bio/Technology, 2020, 19(1): 191-215. |
67 | 娜扎发提·穆罕麦提江, 陈颢明, 闵芳芳, 等. 不同类型生物炭对水体中微塑料的吸附性能[J]. 环境化学, 2021, 40(11): 3368-3378. |
NAZHAFATI Muhanmaitijiang, CHEN Haoming, MIN Fangfang, et al. Sorption properties of microplastics in water by different types of biochar[J]. Environmental Chemistry, 2021, 40(11): 3368-3378. | |
68 | SIIPOLA V, PFLUGMACHER S, ROMAR H, et al. Low-cost biochar adsorbents for water purification including microplastics removal[J]. Applied Sciences, 2020, 10(3): 788. |
69 | ABDOUL MAGID A S I, ISLAM M S, CHEN Yali, et al. Enhanced adsorption of polystyrene nanoplastics (PSNPs) onto oxidized corncob biochar with high pyrolysis temperature[J]. Science of the Total Environment, 2021, 784: 147115. |
70 | WANG Jun, SUN Chen, HUANG Qunxing, et al. Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars[J]. Journal of Hazardous Materials, 2021, 419: 126486. |
71 | SINGH N, KHANDELWAL N, GANIE Z A, et al. Eco-friendly magnetic biochar: An effective trap for nanoplastics of varying surface functionality and size in the aqueous environment[J]. Chemical Engineering Journal, 2021, 418: 129405. |
72 | GANIE Z A, KHANDELWAL N, TIWARI E, et al. Biochar-facilitated remediation of nanoplastic contaminated water: Effect of pyrolysis temperature induced surface modifications[J]. Journal of Hazardous Materials, 2021, 417: 126096. |
73 | ZHU Na, YAN Qian, HE Yupeng, et al. Insights into the removal of polystyrene nanoplastics using the contaminated corncob-derived mesoporous biochar from mining area[J]. Journal of Hazardous Materials, 2022, 433: 128756. |
74 | LEHMANN J, JOSEPH S. Biochar for environmental management: science, technology and implementation[M]. 2nd Ed. London: Routledge, 2015. |
75 | SHEN D K, GU S, BRIDGWATER A V. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 199-206. |
76 | HSIEH Lichun, HE Lei, ZHANG Mengya, et al. Addition of biochar as thin preamble layer into sand filtration columns could improve the microplastics removal from water[J]. Water Research, 2022, 221: 118783. |
77 | KUMAR R, VERMA A, RAKIB M R J, et al. Adsorptive behavior of micro(nano)plastics through biochar: Co-existence, consequences, and challenges in contaminated ecosystems[J]. Science of the Total Environment, 2023, 856: 159097. |
78 | WANG Ziheng, SEDIGHI M, LEA-LANGTON A. Filtration of microplastic spheres by biochar: Removal efficiency and immobilisation mechanisms[J]. Water Research, 2020, 184: 116165. |
79 | TANG Ye, ZHANG Suhua, SU Yinglong, et al. Removal of microplastics from aqueous solutions by magnetic carbon nanotubes[J]. Chemical Engineering Journal, 2021, 406: 126804. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[4] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[5] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[6] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[7] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[8] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[9] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[10] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[11] | WANG Haoran, YIN Quanyu, FANG Ming, HOU Jianlin, LI Jun, HE Bin, ZHANG Mingyue. Optimization of near critical-water treatment process of tobacco stems [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5019-5027. |
[12] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[13] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[14] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[15] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |