Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (1): 30-39.DOI: 10.16085/j.issn.1000-6613.2022-1490
Previous Articles Next Articles
GUO Feng1(), ZHANG Shangjie1, JIANG Yujia1, JIANG Wankui1, XIN Fengxue1,2, ZHANG Wenming1,2(), JIANG Min1,2()
Received:
2022-08-12
Revised:
2022-09-16
Online:
2023-02-20
Published:
2023-01-25
Contact:
ZHANG Wenming, JIANG Min
郭峰1(), 张尚杰1, 蒋羽佳1, 姜万奎1, 信丰学1,2, 章文明1,2(), 姜岷1,2()
通讯作者:
章文明,姜岷
作者简介:
郭峰(1996—),博士研究生,研究方向为甲醇酵母细胞工厂的构建。E-mail:202062112028@njtech.edu.cn。
基金资助:
CLC Number:
GUO Feng, ZHANG Shangjie, JIANG Yujia, JIANG Wankui, XIN Fengxue, ZHANG Wenming, JIANG Min. Biotransformation of one-carbon resources by yeast[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 30-39.
郭峰, 张尚杰, 蒋羽佳, 姜万奎, 信丰学, 章文明, 姜岷. 一碳资源在酵母中的利用与转化[J]. 化工进展, 2023, 42(1): 30-39.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1490
产品 | 宿主 | 共底物 | 产量 | 参考文献 |
---|---|---|---|---|
达马烯二醇-Ⅱ | 毕赤酵母 | 无 | 1mg/g | [ |
洛伐他汀 | 毕赤酵母 | 甘油 | 419mg/L | [ |
莫纳可林 J | 毕赤酵母 | 甘油 | 594mg/L | [ |
苹果酸 | 毕赤酵母 | 无 | 0.75g/L | [ |
苹果酸 | 毕赤酵母 | 酵母粉 | 2.79g/L | [ |
脂肪酸 | 毕赤酵母 | 无 | 23.4g/L | [ |
脂肪醇 | 毕赤酵母 | 无 | 2.0g/L | [ |
谷胱甘肽 | 多形汉逊酵母 | 无 | 0.25g/L | [ |
脂肪酸 | 多形汉逊酵母 | 无 | 15.9g/L | [ |
产品 | 宿主 | 共底物 | 产量 | 参考文献 |
---|---|---|---|---|
达马烯二醇-Ⅱ | 毕赤酵母 | 无 | 1mg/g | [ |
洛伐他汀 | 毕赤酵母 | 甘油 | 419mg/L | [ |
莫纳可林 J | 毕赤酵母 | 甘油 | 594mg/L | [ |
苹果酸 | 毕赤酵母 | 无 | 0.75g/L | [ |
苹果酸 | 毕赤酵母 | 酵母粉 | 2.79g/L | [ |
脂肪酸 | 毕赤酵母 | 无 | 23.4g/L | [ |
脂肪醇 | 毕赤酵母 | 无 | 2.0g/L | [ |
谷胱甘肽 | 多形汉逊酵母 | 无 | 0.25g/L | [ |
脂肪酸 | 多形汉逊酵母 | 无 | 15.9g/L | [ |
底物 | 共底物 | 宿主 | 研究策略 | 成果 | 参考文献 |
---|---|---|---|---|---|
甲醇 | 酵母粉 | 酿酒酵母 | 异源引入来源于毕赤酵母的甲醇同化途径 | 消耗2.35g/L甲醇,细胞生长增长11.70%,积累0.26g/L丙酮酸 | [ |
甲醇 | 酵母粉 | 酿酒酵母 | 实验室适应性驯化 | 揭示了酿酒酵母存在天然的甲醇同化机制 | [ |
甲醇 | 无 | 解脂耶氏酵母 | 异源表达杂合的RuMP和XuMP途径,敲除甲醛脱氢酶,强化Ru5P前体再生,适应性驯化 | 同化1.1g/L甲醇,在甲醇培养基下维持细胞不凋亡 | [ |
甲酸,二氧化碳 | 葡萄糖 | 酿酒酵母 | 在甘氨酸缺陷型菌株中强化表达内源性还原性甘氨酸途径 | 实现甲酸依赖型的生长 | [ |
二氧化碳 | 葡萄糖 | 酿酒酵母 | 异源引入一部分CBB循环基因 | 产物乙醇的产量提高10%,副产物甘油积累下降90% | [ |
二氧化碳 | 木糖 | 酿酒酵母 | 异源引入一部分CBB循环基因 | 产物乙醇的产量提高10%,副产物木糖醇积累下降90% | [ |
二氧化碳 | 甲醇 | 毕赤酵母 | 引入完整的CBB循环,敲除甲醇同化途径,适应性驯化 | 完全利用二氧化碳合成生物质,实现半自养 | [ |
底物 | 共底物 | 宿主 | 研究策略 | 成果 | 参考文献 |
---|---|---|---|---|---|
甲醇 | 酵母粉 | 酿酒酵母 | 异源引入来源于毕赤酵母的甲醇同化途径 | 消耗2.35g/L甲醇,细胞生长增长11.70%,积累0.26g/L丙酮酸 | [ |
甲醇 | 酵母粉 | 酿酒酵母 | 实验室适应性驯化 | 揭示了酿酒酵母存在天然的甲醇同化机制 | [ |
甲醇 | 无 | 解脂耶氏酵母 | 异源表达杂合的RuMP和XuMP途径,敲除甲醛脱氢酶,强化Ru5P前体再生,适应性驯化 | 同化1.1g/L甲醇,在甲醇培养基下维持细胞不凋亡 | [ |
甲酸,二氧化碳 | 葡萄糖 | 酿酒酵母 | 在甘氨酸缺陷型菌株中强化表达内源性还原性甘氨酸途径 | 实现甲酸依赖型的生长 | [ |
二氧化碳 | 葡萄糖 | 酿酒酵母 | 异源引入一部分CBB循环基因 | 产物乙醇的产量提高10%,副产物甘油积累下降90% | [ |
二氧化碳 | 木糖 | 酿酒酵母 | 异源引入一部分CBB循环基因 | 产物乙醇的产量提高10%,副产物木糖醇积累下降90% | [ |
二氧化碳 | 甲醇 | 毕赤酵母 | 引入完整的CBB循环,敲除甲醇同化途径,适应性驯化 | 完全利用二氧化碳合成生物质,实现半自养 | [ |
1 | ZHANG Wenming, SONG Meng, YANG Qiao, et al. Current advance in bioconversion of methanol to chemicals[J]. Biotechnology for Biofuels, 2018, 11: 260. |
2 | 陶雨萱, 张尚杰, 景艺文, 等. 甲基营养型大肠杆菌构建策略的研究进展[J]. 化工进展, 2021, 40(7): 3932-3941. |
TAO Yuxuan, ZHANG Shangjie, JING Yiwen, et al. Recent advances in the construction strategy of methylotrophic Escherichia coli [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3932-3941. | |
3 | 高教琪, 周雍进. 甲醇生物转化的机遇与挑战[J]. 合成生物学, 2020, 1(2): 158-173. |
GAO Jiaoqi, ZHOU Yongjin. Advances in methanol bio-transformation[J]. Synthetic Biology Journal, 2020, 1(2): 158-173. | |
4 | ZHANG Wenming, ZHANG Ting, SONG Meng, et al. Metabolic engineering of Escherichia coli for high yield production of succinic acid driven by methanol[J]. ACS Synthetic Biology, 2018, 7(12): 2803-2811. |
5 | TUYISHIME Philibert, WANG Yu, FAN Liwen, et al. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production[J]. Metabolic Engineering, 2018, 49: 220-231. |
6 | CHEN F Y H, JUNG H W, TSUEI C Y, et al. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol[J]. Cell, 2020, 182(4): 933-946.e14. |
7 | KIM S, LINDNER S N, ASLAN S, et al. Growth of E. coli on formate and methanol via the reductive Glycine pathway[J]. Nature Chemical Biology, 2020, 16(5): 538-545. |
8 | GLEIZER S, BEN-NISSAN R, BAR-ON Y M, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2 [J]. Cell, 2019, 179(6): 1255-1263.e12. |
9 | ANTONOVSKY N, GLEIZER S, NOOR E, et al. Sugar synthesis from CO2 in Escherichia coli [J]. Cell, 2016, 166(1): 115-125. |
10 | GUO Feng, DAI Zhongxue, PENG Wenfang, et al. Metabolic engineering of Pichia pastoris for malic acid production from methanol[J]. Biotechnology and Bioengineering, 2021, 118(1): 357-371. |
11 | DAI Zhongxue, GU Honglian, ZHANG Shangjie, et al. Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae [J]. Bioresource Technology, 2017, 245: 1407-1412. |
12 | ESPINOSA M I, GONZALEZ-GARCIA R A, VALGEPEA K, et al. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae [J]. Nature Communications, 2020, 11(1): 5564. |
13 | WANG Guokun, OLOFSSON-DOLK M, HANSSON F G, et al. Engineering yeast Yarrowia lipolytica for methanol assimilation[J]. ACS Synthetic Biology, 2021, 10(12): 3537-3550. |
14 | FABARIUS J T, WEGAT V, ROTH A, et al. Synthetic methylotrophy in yeasts: towards a circular bioeconomy[J]. Trends in Biotechnology, 2021, 39(4): 348-358. |
15 | GUO Feng, WU Min, ZHANG Shangjie, et al. Improved succinic acid production through the reconstruction of methanol dissimilation in Escherichia coli [J]. Bioresources and Bioprocessing, 2022, 9: 62. |
16 | GREGORY G J, BENNETT R K, PAPOUTSAKIS E T. Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs[J]. Metabolic Engineering, 2022, 71: 99-116. |
17 | 高琳惠, 蔡鹏, 周雍进. 甲醇酵母代谢工程研究进展[J]. 生物工程学报, 2021, 37(3): 966-979. |
GAO Linhui, CAI Peng, ZHOU Yongjin. Advances in metabolic engineering of methylotrophic yeasts[J]. Chinese Journal of Biotechnology, 2021, 37(3): 966-979. | |
18 | MATTANOVICH D, SAUER M, GASSER B. Industrial microorganisms: Pichia pastoris [M]//Industrial Biotechnology. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016: 687-714. |
19 | DONG Ce, QIAO Jie, WANG Xinping, et al. Engineering Pichia pastoris with surface-display minicellulosomes for carboxymethyl cellulose hydrolysis and ethanol production[J]. Biotechnology for Biofuels, 2020, 13: 108. |
20 | KATA I, SEMKIV M V, RUCHALA J, et al. Overexpression of the genes PDC1 and ADH1 activates glycerol conversion to ethanol in the thermotolerant yeast Ogataea (Hansenula) polymorpha[J]. Yeast, 2016, 33(8): 471-478. |
21 | GONÇALVES D B, BATISTA A F, RODRIGUES M Q R B, et al. Ethanol production from macaúba (Acrocomia aculeata) presscake hemicellulosic hydrolysate by Candida boidinii UFMG14[J]. Bioresource Technology, 2013, 146: 261-266. |
22 | CAI Peng, WU Xiaoyan, DENG Jun, et al. Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(29): e2201711119. |
23 | GAO Jiaoqi, LI Yunxia, YU Wei, et al. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol[J]. Nature Metabolism, 2022, 4(7): 932-943. |
24 | MEESAPYODSUK D, CHEN Yan, NG S H, et al. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance[J]. Journal of Lipid Research, 2015, 56(11): 2102-2109. |
25 | CAI Peng, LI Yunxia, ZHAI Xiaoxin, et al. Microbial synthesis of long-chain α-alkenes from methanol by engineering Pichia pastoris [J]. Bioresources and Bioprocessing, 2022, 9: 58. |
26 | LI Cheng, LIN Ying, ZHENG Xueyun, et al. Recycling of a selectable marker with a self-excisable plasmid in Pichia pastoris [J]. Scientific Reports, 2017, 7: 11113. |
27 | WRIESSNEGGER T, AUGUSTIN P, ENGLEDER M, et al. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris [J]. Metabolic Engineering, 2014, 24: 18-29. |
28 | LIU Xinbin, LIU Min, TAO Xinyi, et al. Metabolic engineering of Pichia pastoris for the production of dammarenediol-Ⅱ[J]. Journal of Biotechnology, 2015,216: 47-55. |
29 | CAI Peng, DUAN Xingpeng, WU Xiaoyan, et al. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris [J]. Nucleic Acids Research, 2021, 49(13): 7791-7805. |
30 | GAO Jiaoqi, GAO Ning, ZHAI Xiaoxin, et al. Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha [J]. iScience, 2021, 24(3): 102168. |
31 | LIU Yiqi, TU Xiaohu, XU Qin, et al. Engineered monoculture and co-culture of methylotrophic yeast for de novo production of monacolin J and lovastatin from methanol[J]. Metabolic Engineering, 2018, 45: 189-199. |
32 | LIU Yiqi, BAI Chenxiao, XU Qin, et al. Improved methanol-derived lovastatin production through enhancement of the biosynthetic pathway and intracellular lovastatin efflux in methylotrophic yeast[J]. Bioresources and Bioprocessing, 2018, 5: 22. |
33 | UBIYVOVK V M, ANANIN V M, MALYSHEV A Y, et al. Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1[J]. BMC Biotechnology, 2011, 11: 8. |
34 | ESPINOSA M I, WILLIAMS T C, PRETORIUS I S, et al. Benchmarking two Saccharomyces cerevisiae laboratory strains for growth and transcriptional response to methanol[J]. Synthetic and Systems Biotechnology, 2019, 4(4): 180-188. |
35 | GONZÁLEZ DE LA CRUZ J, MACHENS F, MESSERSCHMIDT K, et al. Core catalysis of the reductive Glycine pathway demonstrated in yeast[J]. ACS Synthetic Biology, 2019, 8(5): 911-917. |
36 | GUADALUPE-MEDINA V, WISSELINK H W, LUTTIK M A, et al. Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast[J]. Biotechnology for Biofuels, 2013, 6(1): 125. |
37 | PAPAPETRIDIS I, GOUDRIAAN M, VÁZQUEZ VITALI M, et al. Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield[J]. Biotechnology for Biofuels, 2018, 11: 17. |
38 | GASSLER T, SAUER M, GASSER B, et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2 [J]. Nature Biotechnology, 2020, 38(2): 210-216. |
39 | COTTON C A, CLAASSENS N J, BENITO-VAQUERIZO S, et al. Renewable methanol and formate as microbial feedstocks[J]. Current Opinion in Biotechnology, 2020, 62: 168-180. |
40 | BAI Xiaofang, CHEN Wei, ZHAO Chengcheng, et al. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy[J]. Angewandte Chemie, 2017, 129(40): 12387-12391. |
41 | BAR-EVEN A, NOOR E, FLAMHOLZ A, et al. Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes[J]. Biochimica et Biophysica Acta (BBA): Bioenergetics, 2013, 1827(8/9): 1039-1047. |
42 | BAR-EVEN A, NOOR E, MILO R. A survey of carbon fixation pathways through a quantitative lens[J]. Journal of Experimental Botany, 2011, 63(6): 2325-2342. |
43 | LI Han, OPGENORTH P H, WERNICK D G, et al. Integrated electromicrobial conversion of CO2 to higher alcohols[J]. Science, 2012, 335(6076): 1596. |
44 | YISHAI O, LINDNER S N, GONZALEZ DE LA CRUZ J, et al. The formate bio-economy[J]. Current Opinion in Chemical Biology, 2016, 35: 1-9. |
45 | SÁNCHEZ-ANDREA I, GUEDES I A, HORNUNG B, et al. The reductive Glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans [J]. Nature Communications, 2020, 11(1): 5090. |
46 | CLAASSENS N J. Reductive Glycine pathway: a versatile route for one-carbon biotech[J]. Trends in Biotechnology, 2021, 39(4): 327-329. |
47 | PETER S C. Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis[J]. ACS Energy Letters, 2018, 3(7): 1557-1561. |
48 | XU Suyun, QIAO Zihao, LUO Liwen, et al. On-site CO2 bio-sequestration in anaerobic digestion: current status and prospects[J]. Bioresource Technology, 2021, 332: 125037. |
49 | HA-TRAN D M, LAI Rouyin, NGUYEN T T M, et al. Construction of engineered RuBisCO Kluyveromyces marxianus for a dual microbial bioethanol production system[J]. PLoS One, 2021, 16(3): e0247135. |
50 | BAR-EVEN A, FLAMHOLZ A, NOOR E, et al. Thermodynamic constraints shape the structure of carbon fixation pathways[J]. Biochimica et Biophysica Acta (BBA): Bioenergetics, 2012, 1817(9): 1646-1659. |
51 | GUO Junling, SUÁSTEGUI M, SAKIMOTO K K, et al. Light-driven fine chemical production in yeast biohybrids[J]. Science, 2018, 362(6416): 813-816. |
52 | ZHANG Hao, LIU Hao, TIAN Zhiquan, et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production[J]. Nature Nanotechnology, 2018, 13(10): 900-905. |
53 | HONG Y, ARBTER P, WANG Wei, et al. Introduction of Glycine synthase enables uptake of exogenous formate and strongly impacts the metabolism in Clostridium pasteurianum [J]. Biotechnology and Bioengineering, 2021, 118(3): 1366-1380. |
54 | SCHWANDER T, VON BORZYSKOWSKI L S, BURGENER S, et al. A synthetic pathway for the fixation of carbon dioxide in vitro [J]. Science, 2016, 354(6314): 900-904. |
55 | LIEBAL U W, BLANK L M, EBERT B E. CO2 to succinic acid—Estimating the potential of biocatalytic routes[J]. Metabolic Engineering Communications, 2018, 7: e00075. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[3] | SHU Bin, CHEN Jianhong, XIONG Jian, WU Qirong, YU Jiangtao, YANG Ping. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478. |
[4] | WANG Zijian, KE Ming, SONG Zhaozheng, LI Jiahan, TONG Yanbing, SUN Jinru. Progress in alkylation of gasoline with molecular sieve catalyst for benzene reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2371-2389. |
[5] | XIAO Yaoxin, ZHANG Jun, HU Sheng, SHAN Rui, YUAN Haoran, CHEN Yong. Cu-Zn catalyzed hydrogenation of furfural with methanol as hydrogen donor [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1341-1352. |
[6] | HUANG Qizhong, LIU Bing, MA Hongpeng, LYU Wenjie. Methanol to olefin wastewater treatment based on a novel microchannel separation technology [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 669-676. |
[7] | TAO Yuxuan, GUO Liang, GAO Cong, SONG Wei, CHEN Xiulai. Progress in metabolic engineering of microorganisms for CO2 fixation [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 40-52. |
[8] | LI Zhe, LI Zeyang, YANG Yusen, WEI Min. Research progress on catalysts for electrocatalytic reduction of carbon dioxide to formic acid [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 53-66. |
[9] | LIU Penglong, XU Xiongfei, ZHANG Wei, XU Xin, ZHANG Kan, WANG Junwen. Local modeling and optimization of K-means-PSO-SVR for methanol to aromatics [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4691-4700. |
[10] | XIANG Sheng, WANG Chao, ZHUANG Yu, GU Siwen, ZHANG Lei, DU Jian. Design and control of pressure-swing distillation for separating methyl acetate-methanol-ethyl acetate azeotropic system [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4065-4076. |
[11] | ZHANG Jiaqi, LIN Lina, GAO Wengui, ZHU Xing. Effect of CeO2 morphology on the performance of CuO/CeO2 catalyst for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4213-4223. |
[12] | ZHAO Jianbing, YANG Dan, SHU Yuancao, ZHU Junbo, PU Shiping, SONG Xiaodan, LIU Shouqing, CHAI Xijuan, LI Xuemei. Preparation of Na2CO3 /CF solid base and its catalytic transesterification of rapeseed oil [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3608-3614. |
[13] | LI Guixian, ZHANG Junqiang, YANG Yong, FAN Xueying, WANG Dongliang. A novel PX production shortcut through PX selectivity intensification in toluene and methanol methylation [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2939-2947. |
[14] | WANG Jijie, HAN Zhe, CHEN Siyu, TANG Chizhou, SHA Feng, TANG Shan, YAO Tingting, LI Can. Liquid sunshine methanol [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317. |
[15] | CHANG Fei, ZHAN Guoxiong, SHI Sensen, ZENG Shaojuan, ZHANG Xiangping. Process assessment for electroreduction CO2 to methanol in ionic liquid electrolyte [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1256-1264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |