Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (8): 4065-4076.DOI: 10.16085/j.issn.1000-6613.2021-2059
• Chemical processes and equipment • Previous Articles Next Articles
XIANG Sheng1(), WANG Chao1, ZHUANG Yu1, GU Siwen1,2, ZHANG Lei1(), DU Jian1
Received:
2021-09-30
Revised:
2021-12-14
Online:
2022-08-22
Published:
2022-08-25
Contact:
ZHANG Lei
向晟1(), 王超1, 庄钰1, 顾偲雯1,2, 张磊1(), 都健1
通讯作者:
张磊
作者简介:
向晟(1998—),男,硕士研究生,研究方向为化工过程与产品设计。E-mail:基金资助:
CLC Number:
XIANG Sheng, WANG Chao, ZHUANG Yu, GU Siwen, ZHANG Lei, DU Jian. Design and control of pressure-swing distillation for separating methyl acetate-methanol-ethyl acetate azeotropic system[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4065-4076.
向晟, 王超, 庄钰, 顾偲雯, 张磊, 都健. 变压精馏分离乙酸甲酯-甲醇-乙酸乙酯体系的设计与控制[J]. 化工进展, 2022, 41(8): 4065-4076.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2059
压力/bar | X实验 | X预测1 | ΔX1/% | X预测2 | ΔX2/% | X预测3 | ΔX3/% |
---|---|---|---|---|---|---|---|
8.77 | 0.455[ | 0.465 | 2.15 | 0.466 | 2.36 | 0.452 | 0.66 |
5.86 | 0.515[ | 0.511 | 0.78 | 0.512 | 0.59 | 0.499 | 3.11 |
1.013 | 0.661[ | 0.668 | 1.05 | 0.671 | 1.49 | 0.666 | 0.75 |
0.799 | 0.675[ | 0.685 | 1.46 | 0.689 | 2.03 | 0.684 | 1.33 |
0.667 | 0.691[ | 0.697 | 0.86 | 0.701 | 1.43 | 0.697 | 0.87 |
Δ | Δ | Δ |
压力/bar | X实验 | X预测1 | ΔX1/% | X预测2 | ΔX2/% | X预测3 | ΔX3/% |
---|---|---|---|---|---|---|---|
8.77 | 0.455[ | 0.465 | 2.15 | 0.466 | 2.36 | 0.452 | 0.66 |
5.86 | 0.515[ | 0.511 | 0.78 | 0.512 | 0.59 | 0.499 | 3.11 |
1.013 | 0.661[ | 0.668 | 1.05 | 0.671 | 1.49 | 0.666 | 0.75 |
0.799 | 0.675[ | 0.685 | 1.46 | 0.689 | 2.03 | 0.684 | 1.33 |
0.667 | 0.691[ | 0.697 | 0.86 | 0.701 | 1.43 | 0.697 | 0.87 |
Δ | Δ | Δ |
压力/bar | X实验 | X预测1 | ΔX1/% | X预测2 | ΔX2/% | X预测3 | ΔX3/% |
---|---|---|---|---|---|---|---|
1.41 | 0.742[ | 0.723 | 2.56 | 0.727 | 2.02 | 0.722 | 2.70 |
1.013 | 0.700[ | 0.703 | 0.43 | 0.708 | 1.14 | 0.703 | 0.43 |
0.92 | 0.698[ | 0.698 | 0 | 0.702 | 0.57 | 0.698 | 0 |
Δ | Δ | Δ |
压力/bar | X实验 | X预测1 | ΔX1/% | X预测2 | ΔX2/% | X预测3 | ΔX3/% |
---|---|---|---|---|---|---|---|
1.41 | 0.742[ | 0.723 | 2.56 | 0.727 | 2.02 | 0.722 | 2.70 |
1.013 | 0.700[ | 0.703 | 0.43 | 0.708 | 1.14 | 0.703 | 0.43 |
0.92 | 0.698[ | 0.698 | 0 | 0.702 | 0.57 | 0.698 | 0 |
Δ | Δ | Δ |
压力范围/bar | 系数C的取值 |
---|---|
0~3.4 | 3919.32 |
3.4~6.8 | 3966.20 |
6.8~13.6 | 4059.96 |
13.6~20.5 | 4106.85 |
压力范围/bar | 系数C的取值 |
---|---|
0~3.4 | 3919.32 |
3.4~6.8 | 3966.20 |
6.8~13.6 | 4059.96 |
13.6~20.5 | 4106.85 |
蒸汽类型 | 压力/bar | 温度/℃ | 价格/USD·kJ-1 |
---|---|---|---|
低压蒸汽 | 6 | 160 | 7.78×10-6 |
中压蒸汽 | 11 | 184 | 8.22×10-6 |
高压蒸汽 | 42 | 254 | 9.88×10-6 |
蒸汽类型 | 压力/bar | 温度/℃ | 价格/USD·kJ-1 |
---|---|---|---|
低压蒸汽 | 6 | 160 | 7.78×10-6 |
中压蒸汽 | 11 | 184 | 8.22×10-6 |
高压蒸汽 | 42 | 254 | 9.88×10-6 |
1 | 任海伦, 安登超, 朱桃月, 等. 精馏技术研究进展与工业应用[J]. 化工进展, 2016, 35(6): 1606-1626. |
REN Hailun, AN Dengchao, ZHU Taoyue, et al. Distillation technology research progress and industrial application[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1606-1626. | |
2 | GΌRAK A, SORENSEN E. Distillation: fundamentals and principles[M]. Amsdertam: Elsevier Inc., 2014: 307. |
3 | LUYBEN W L. Pressure-swing distillation for minimum- and maximum-boiling homogeneous azeotropes[J]. Industrial & Engineering Chemistry Research, 2012, 51(33): 10881-10886. |
4 | SOUKUP S T, AL-MAHARIK N, BOTTING N, et al. Quantification of soy isoflavones and their conjugative metabolites in plasma and urine: an automated and validated UHPLC-MS/MS method for use in large-scale studies[J]. Analytical and Bioanalytical Chemistry, 2014, 406(24): 6007-6020. |
5 | 王崇晓, 朱龙平. 恒沸精馏分离乙腈-甲醇-水体系的研究[J]. 广东化工, 2015, 42(13): 3-4. |
WANG Chongxiao, ZHU Longping. Study on separation of acetonitrile-methanol-water system by azeotropic distillation[J]. Guangdong Chemical Industry, 2015, 42(13): 3-4. | |
6 | CHANIAGO Y D, LEE M. Distillation design and optimization of quaternary azeotropic mixtures for waste solvent recovery[J]. Journal of Industrial and Engineering Chemistry, 2018, 67: 255-265. |
7 | 姜斌, 吴菲, 隋红, 等. 甲醇-丙酮共沸物分离的研究进展[J]. 化工进展, 2010, 29(3): 397-402. |
JIANG Bin, WU Fei, SUI Hong, et al. Development in separation of acetone-methanol azeotrope[J]. Chemical Industry and Engineering Progress, 2010, 29(3): 397-402. | |
8 | CAO Yujuan, LI Min, WANG Yong, et al. Effect of feed temperature on economics and controllability of pressure-swing distillation for separating binary azeotrope[J]. Chemical Engineering and Processing: Process Intensification, 2016, 110: 160-171. |
9 | 杨金杯, 黄辉, 余美琼, 等. 萃取精馏与变压精馏分离甲醇/乙酸异丙酯工艺优化及节能[J]. 中南大学学报(自然科学版), 2020, 51(9): 2379-2388. |
YANG Jinbei, HUANG Hui, YU Meiqiong, et al. Optimization and energy-saving for methanol + isopropyl acetate separation by extractive distillation and pressure swing distillation[J]. Journal of Central South University (Science and Technology), 2020, 51(9): 2379-2388. | |
10 | KNAPP J P, DOHERTY M F. A new pressure-swing-distillation process for separating homogeneous azeotropic mixtures[J]. Industrial & Engineering Chemistry Research, 1992, 31(1): 346-357. |
11 | ZHU Zhaoyou, XU Dongfang, LIU Xingzhen, et al. Separation of acetonitrile/methanol/benzene ternary azeotrope via triple column pressure-swing distillation[J]. Separation and Purification Technology, 2016, 169: 66-77. |
12 | ZHU Zhaoyou, XU Dongfang, WANG Yongkun, et al. Effect of multi-recycle streams on triple-column pressure-swing distillation optimization[J]. Chemical Engineering Research and Design, 2017, 127: 215-222. |
13 | ZHU Zhaoyou, XU Dongfang, JIA Hui, et al. Heat integration and control of a triple-column pressure-swing distillation process[J]. Industrial & Engineering Chemistry Research, 2017, 56(8): 2150-2167. |
14 | LUYBEN W L. Control of a triple-column pressure-swing distillation process[J]. Separation and Purification Technology, 2017, 174: 232-244. |
15 | ZHANG Qingjun, LIU Meiling, LI Wang, et al. Heat-integrated triple-column pressure-swing distillation process with multi-recycle streams for the separation of ternary azeotropic mixture of acetonitrile/methanol/benzene[J]. Separation and Purification Technology, 2019, 211: 40-53. |
16 | YANG Ao, SHEN Weifeng, WEI Shun’an, et al. Design and control of pressure-swing distillation for separating ternary systems with three binary minimum azeotropes[J]. AIChE Journal, 2019, 65(4): 1281-1293. |
17 | WANG Chao, GUANG Chao, CUI Yue, et al. Separation of a ternary mixture with multiple azeotropes via pressure-swing distillation[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(6): 2023-2033. |
18 | WANG Chao, ZHANG Zhishan, ZHANG Xiaokang, et al. Comparison of pressure-swing distillation with or without crossing curved-boundary for separating a multiazeotropic ternary mixture[J]. Separation and Purification Technology, 2019, 220: 114-125. |
19 | 黄旭, 罗祎青, 袁希钢. 带共沸的乙醇/乙酸乙酯/2-丁酮三元物系变压精馏分离过程及其参数优化[J]. 化工学报, 2018, 69(5): 2089-2099. |
HUANG Xu, LUO Yiqing, YUAN Xigang. Separation of C2H5OH/C4H8O2-3/C4H8O-3 ternary mixture with azeotropes by pressure swing distillation and its parameter optimization[J]. CIESC Journal, 2018, 69(5): 2089-2099. | |
20 | KAYMAK D B. Design and control of an alternative intensified process configuration for separation of butanol-butyl acetate-methyl isobutyl ketone system[J]. Chemical Engineering and Processing Process Intensification, 2021, 159: 108233. |
21 | CAO Jun, YU Guangren, CHEN Xiaochun, et al. Determination of vapor–liquid equilibrium of methyl acetate + methanol + 1-alkyl-3-methylimidazolium dialkylphosphates at 101.3kPa[J]. Journal of Chemical & Engineering Data, 2017, 62(2): 816-824. |
22 | NISHI Y. Vapor-liquid equilibrium for binary systems accompanied by hypothetical chemical reaction[J]. Nippon Kagaku Kaishi, 1973(8): 1592-1595. |
23 | ZHANG Zhigang, PAN Fenjin, ZHANG Qinqin, et al. Isobaric vapor–liquid equilibria for ethyl acetate + methanol + ionic liquids ternary systems at 101.3kPa[J]. Journal of Chemical & Engineering Data, 2016, 61(2): 772-779. |
24 | NAGAHAMA K, HIRATA M. Binary vapor-liquid equilibria at elevated pressures[J]. Journal of Chemical Engineering of Japan, 1971, 4(3): 205-210. |
25 | CHEN Genghua, WANG Qi, ZHANG Lianzhong, et al. Study and applications of binary and ternary azeotropes[J]. Thermochimica Acta, 1995, 253: 295-305. |
26 | BLANCO A M, ORTEGA J. Densities and vapor-liquid equilibrium values for binary mixtures composed of methanol + an ethyl ester at 141.3kPa with application of an extended correlation equation for isobaric VLE data[J]. Journal of Chemical & Engineering Data, 1998, 43(4): 638-645. |
27 | MURTI P, VAN WINKLE M. Vapor-liquid equilibria for binary systems of methanol, ethyl alcohol, 1-propanol, and 2-propanol with ethyl acetate and 1-propanol-water[J]. Industrial & Engineering Chemistry Chemical & Engineering Data Series, 1958, 3(1): 72-81. |
28 | OLUJIĆ Ž, SUN L, DE RIJKE A, et al. Conceptual design of an internally heat integrated propylene-propane splitter[J]. Energy, 2006, 31(15): 3083-3096. |
29 | WANG Chao, ZHUANG Yu, LIU Linlin, et al. Design and comparison of conventional and side-stream extractive distillation sequences for separating the methanol-toluene binary azeotrope with intermediate boiling entrainer[J]. Computers & Chemical Engineering, 2020, 143: 107115. |
30 | LUYBEN W L. Distillation Design and control using AspenTM simulation[M]. 2nd ed. Hoboken: John Wiley & Sons, 2013: 84 . |
31 | 张伟静, 张雷. 隔壁塔萃取精馏分离丙酸甲酯-甲醇的模拟与优化[J]. 现代化工, 2021, 41(S1): 315-318. |
ZHANG Weijing, ZHANG Lei. Simulation and optimization of separation of methyl propionate-methanol by extractive distillation in dividing wall column[J]. Modern Chemical Industry, 2021, 41(S1): 315-318. | |
32 | 钱行, 黄克谨, 陈海胜, 等. 基于粒子群算法的隔离壁精馏塔的综合与设计[J]. 化工进展, 2021, 40(11): 5967-5972. |
QIAN Xing, HUANG Kejin, CHEN Haisheng, et al. Synthesis and design of dividing-wall distillation column based on particle swarm optimization[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5967-5972. | |
33 | 陆佳伟, 汤吉海, 张竹修, 等. Matlab与Aspen Plus软件交互实现和应用[J]. 计算机与应用化学, 2018, 35(1): 53-61. |
LU Jiawei, TANG Jihai, ZHANG Zhuxiu, et al. The realization and application of the integration between Matlab and Aspen Plus[J]. Computers and Applied Chemistry, 2018, 35(1): 53-61. | |
34 | 徐东芳, 胡佳静, 王丽丽, 等. 变压精馏分离乙醇-氯仿共沸物的动态特性[J]. 化工进展, 2016, 35(4): 1242-1249. |
XU Dongfang, HU Jiajing, WANG Lili, et al. Dynamic characteristics of pressure-swing distillation for ethanol-chloroform separation[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 1242-1249. | |
35 | 徐东芳. 三塔变压精馏分离甲醇-乙腈-苯的过程综合与热集成[D]. 青岛: 青岛科技大学, 2017. |
XU Dongfang. Process synthesis and heat integration of triple column pressure-swing distillation for separating methanol/acetonitrile/benzene[D]. Qingdao: Qingdao University of Science & Technology, 2017. | |
36 | 孟庆信. 特殊精馏分离甲苯-乙醇共沸物系的优化与控制[D]. 青岛: 青岛科技大学, 2014. |
MENG Qingxin. Optimization and control of separation for toluene-ethanol azeotropic system with special distillation[D]. Qingdao: Qingdao University of Science & Technology, 2014. |
[1] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[2] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[3] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[4] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[5] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[6] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
[7] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[8] | LI Xue, WANG Yanjun, WANG Yuchao, TAO Shengyang. Recent advances in bionic surfaces for fog collection [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2486-2503. |
[9] | LIU Guangping, LU Zhenneng, GONG Yulie. Dynamic response and disturbance optimization of high temperature heat pump steam systems [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1719-1727. |
[10] | ZOU Yincai, LI Qingguo, WU Hui, ZHONG Xiaobing, CHEN Xianzhi. Heat transfer simulation and optimization of missile borne phase change heat sink [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1248-1256. |
[11] | SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. |
[12] | YAN Zihan, CHEN Qunyun, LI Zhuo, FU Rongbing, LI Yanwei, WU Zhigen. Numerical analysis and optimization of the performance of an improved soil crushing and mixing structure [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 72-80. |
[13] | BAO Miaoqing. Research on Zhejiang manufacturing quality standard of styrene products [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 648-655. |
[14] | LI Guixian, ZHANG Junqiang, YANG Yong, FAN Xueying, WANG Dongliang. A novel PX production shortcut through PX selectivity intensification in toluene and methanol methylation [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2939-2947. |
[15] | ZHANG Ningning, DING Hua, GAO Yan, BAI Xiangfei, ZHANG Yunpeng, SUN Nanxiang. Migration behavior of sodium in Xinjiang Naomaohu coal during the CO2 gasification [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2348-2355. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |