Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (1): 40-52.DOI: 10.16085/j.issn.1000-6613.2022-1545
Previous Articles Next Articles
TAO Yuxuan1(), GUO Liang1, GAO Cong1, SONG Wei2, CHEN Xiulai1()
Received:
2022-08-22
Revised:
2022-10-29
Online:
2023-02-20
Published:
2023-01-25
Contact:
CHEN Xiulai
通讯作者:
陈修来
作者简介:
陶雨萱(1997—),女,博士研究生,研究方向为微生物代谢工程。E-mail:15106192105@163.com。
基金资助:
CLC Number:
TAO Yuxuan, GUO Liang, GAO Cong, SONG Wei, CHEN Xiulai. Progress in metabolic engineering of microorganisms for CO2 fixation[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 40-52.
陶雨萱, 郭亮, 高聪, 宋伟, 陈修来. 代谢工程改造微生物固定二氧化碳研究进展[J]. 化工进展, 2023, 42(1): 40-52.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1545
CO2固定途径 | 固定CO2/HCO | 消耗能量 | 重要产物 | 氧气需求 | 参考文献 |
---|---|---|---|---|---|
CBB循环 | 3mol CO2 | 9mol ATP + 6mol NAD(P)H | 3-磷酸甘油醛 | 好氧 | [ |
RTCA途径 | 2mol CO2 | 2mol ATP + 4mol NAD(P)H | 乙酰辅酶A | 厌氧/微氧 | [ |
3-HP双循环 | 3mol HCO | 5mol ATP + 5mol NAD(P)H | 丙酮酸 | 好氧 | [ |
WL途径 | 2mol CO2 | 1mol ATP + 4mol NAD(P)H | 乙酰辅酶A | 厌氧 | [ |
DC-4HB循环 | 1mol CO2 + 1mol HCO | 3mol ATP + 4mol NAD(P)H | 乙酰辅酶A | 厌氧/微氧 | [ |
3HP-4HB循环 | 2mol HCO | 4mol ATP + 4mol NAD(P)H | 乙酰辅酶A | 好氧 | [ |
CO2固定途径 | 固定CO2/HCO | 消耗能量 | 重要产物 | 氧气需求 | 参考文献 |
---|---|---|---|---|---|
CBB循环 | 3mol CO2 | 9mol ATP + 6mol NAD(P)H | 3-磷酸甘油醛 | 好氧 | [ |
RTCA途径 | 2mol CO2 | 2mol ATP + 4mol NAD(P)H | 乙酰辅酶A | 厌氧/微氧 | [ |
3-HP双循环 | 3mol HCO | 5mol ATP + 5mol NAD(P)H | 丙酮酸 | 好氧 | [ |
WL途径 | 2mol CO2 | 1mol ATP + 4mol NAD(P)H | 乙酰辅酶A | 厌氧 | [ |
DC-4HB循环 | 1mol CO2 + 1mol HCO | 3mol ATP + 4mol NAD(P)H | 乙酰辅酶A | 厌氧/微氧 | [ |
3HP-4HB循环 | 2mol HCO | 4mol ATP + 4mol NAD(P)H | 乙酰辅酶A | 好氧 | [ |
CO2固定途径 | 固定CO2/HCO3- | 消耗能量 | 固碳效率 | 氧气需求 | 参考文献 |
---|---|---|---|---|---|
CETCH循环 | 1mol CO2 | 1mol ATP + 4mol NAD(P)H | 5nmol CO2/(mg 蛋白·min) | 好氧 | [ |
rGly途径 | 1mol CO2 | 2mol ATP + 4mol NAD(P)H | — | 好氧 | [ |
POAP循环 | 2mol CO2 | 2mol ATP和1mol NAD(P)H | 8.0nmol CO2/(mg CO2固定酶·min) | 厌氧 | [ |
acetyl-CoA双循环 | 2mol CO2 | 消耗2mol乙酰辅酶A并生产3mol | — | 厌氧 | [ |
rGPS-MCG系统 | 2mol HCO3– | 5mol ATP + 5mol NAD(P)H | 28.5nmol CO2/(mg核心蛋白·min) | 好氧/厌氧 | [ |
CO2固定途径 | 固定CO2/HCO3- | 消耗能量 | 固碳效率 | 氧气需求 | 参考文献 |
---|---|---|---|---|---|
CETCH循环 | 1mol CO2 | 1mol ATP + 4mol NAD(P)H | 5nmol CO2/(mg 蛋白·min) | 好氧 | [ |
rGly途径 | 1mol CO2 | 2mol ATP + 4mol NAD(P)H | — | 好氧 | [ |
POAP循环 | 2mol CO2 | 2mol ATP和1mol NAD(P)H | 8.0nmol CO2/(mg CO2固定酶·min) | 厌氧 | [ |
acetyl-CoA双循环 | 2mol CO2 | 消耗2mol乙酰辅酶A并生产3mol | — | 厌氧 | [ |
rGPS-MCG系统 | 2mol HCO3– | 5mol ATP + 5mol NAD(P)H | 28.5nmol CO2/(mg核心蛋白·min) | 好氧/厌氧 | [ |
1 | LIU Z, WANG K, CHEN Y, Third-generation biorefineries as the means to produce fuels and chemicals from CO2 [J]. Nature Catalysis, 2020, 3: 274-288. |
2 | HUGHES T P, BAIRD A H, BELLWOOD D R, et al. Climate change, human impacts, and the resilience of coral reefs[J]. Science, 2003, 301(5635): 929-933. |
3 | XU X Y, KENTISH S E and MARTIN G J O. Direct air capture of CO2 by microalgae with buoyant beads encapsulating carbonic anhydrase[J]. ACS Sustainable Chemistry and Engineering, 2021, 9(29): 9698-9706. |
4 | DE VISSER E, HENDRIKS C, BARRIO M, et al. Dynamis CO2 quality recommendations[J]. International Journal of Greenhouse Gas Control, 2008, 2(4): 478-484. |
5 | WALL T F. Combustion processes for carbon capture[J]. Proceedings of the Combustion Institute, 2007, 31(1): 31-47. |
6 | BRUNETTI A, SCURA F, BARBIERI G, et al. Membrane technologies for CO2 separation[J]. Journal of Membrane Science, 2010, 359: 115-125. |
7 | LEUNG D Y C, CARAMANNA G and MAROTO-VALER M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443. |
8 | LIANG F, ENGLUND E, LINDBERG P, et al. Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio[J]. Metabolic Engineering, 2018, 46: 51-59. |
9 | MOON S Y, HONG S H, KIM T Y, et al. Metabolic engineering of Escherichia coli for the production of malic acid[J]. Biochemical Engineering Journal, 2008, 40: 312-320. |
10 | GASSLER T, SAUER M, GASSER B, et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2 [J]. Nature Biotechnology, 2020, 38: 210-216. |
11 | GONG F, ZHU H, ZHANG Y, et al. Biological carbon fixation: From natural to synthetic[J]. Journal of CO2 Utilization, 2018, 28: 221-227. |
12 | GONG F, CAI Z, LI Y. Synthetic biology for CO2 fixation[J]. Science China Life Sciences, 2016, 59(11): 1106-1114. |
13 | CALVIN M, BENSO A A. The path of carbon in photosynthesis[J]. Science, 1948, 107: 476-480. |
14 | ALTAŞ N, ASLAN A S, KARATAŞ E, et al. Heterologous production of extreme alkaline thermostable NAD+- dependent formate dehydrogenase with wide-range pH activity from Myceliophthora thermophila [J]. Process Biochemistry, 2017, 61: 110-118. |
15 | HUGLER M, MENENDEZ C, SCHAGGER H, et al. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation[J]. Journal of Bacteriology, 2002, 184(9): 2404-2410. |
16 | KUMAR M, SUNDARAM S, GNANSOUNOU E, et al. Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review[J]. Bioresource Technology, 2018, 247: 1059-1068. |
17 | HUBER H, GALLENBERGER M, LAHN U, et al. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(22): 7851-7856. |
18 | BERG I A, KOCKELKORN D, BUCKEL W, et al. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea [J]. Science, 2007, 318: 1782-1786. |
19 | MOHAN S V, MODESTRA J A, AMULYA K, et al. A circular bioeconomy with biobased products from CO2 sequestration[J]. Trends in Biotechnology, 2016, 34(6): 506-519. |
20 | SHI L X, THEG S M. The chloroplast protein import system: from algae to trees[J]. BBA Molecular Cell Research, 2013, 1833(2): 314-331. |
21 | FUCHS G. Alternative pathways of carbon dioxide fixation: Insights into the early evolution of life?[J]. Annual Review of Microbiology, 2011, 65: 631-658. |
22 | JAJESNIAK P, ALI H E M O and WONG T S. Carbon dioxide capture and utilization using biological systems: opportunities and challenges[J]. Journal of Bioprocessing and Biotechniques, 2014, 4(3): 1000155. |
23 | ZHAO T, LI Y, ZHANG Y. Biological carbon fixation: A thermodynamic perspective[J]. Green Chemistry, 2021, 23(20): 7852-7864. |
24 | BARENHOLZ U, DAVIDI D, REZNIK E, et al. Design principles of autocatalytic cycles constrain enzyme kinetics and force low substrate saturation at flux branch points[J]. Elife, 2017, 6: e20667. |
25 | HU G, LI Y, YE C, et al. Engineering microorganisms for enhanced CO2 sequestration[J]. Trends in Biotechnology, 2019, 37(5): 532-547. |
26 | LIANG F, LINDBLAD P. Synechocystis PCC 6803 overexpressing RuBisCo grow faster with increased photosynthesis[J]. Metabolic Engineering Communications, 2017, 4: 29-36. |
27 | ANDREWS T J, LORIMER G H. Rubisco structure, mechanisms, and prospects for improvement[J]. The Biochemistry of Plants, 1987, 10: 131-218. |
28 | NISHITANI Y, YOSHIDA S, FUJIHASHI M, et al. Structure-based catalytic optimization of a type Ⅲ RuBisCo from a hyperthermophile[J]. The Journal of Biological Chemistry, 2010, 285(50): 39339-39347. |
29 | DURAO P, AIGNER H, NAGY P, et al. Opposing effects of folding and assembly chaperones on evolvability of Rubisco[J]. Nature Chemical Biology, 2015, 11(2): 148-155. |
30 | YANG F, ZHANG J, CAI Z, et al. Exploring the oxygenase function of Form II Rubisco for production of glycolate from CO2 [J]. AMB Express, 2021, 11(65). |
31 | ZHOU J, ZHANG F, MENG H, et al. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria[J]. Metabolic Engineering, 2016, 38: 217-227. |
32 | BAR-EVEN A. Daring metabolic designs for enhanced plant carbon fixation[J]. Plant Science, 2018, 273: 71-83. |
33 | BAR-EVEN A, NOOR E, FLAMHOLZ A, et al. Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes[J]. Biochimica et Biophysica Acta, 2013, 1827(8-9): 1039-1047. |
34 | BAR-EVEN A, NOOR E, LEWIS N E, et al. Design and analysis of synthetic carbon fixation pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8889-8894. |
35 | DEVI M P, MOHAN S V. CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: Effect of sparging period and interval[J]. Bioresource Technology, 2012, 112: 116-123. |
36 | PALOVAARA J, AKRAM N, BALTAR F, et al. Stimulation of growth by proteorhodopsin phototrophy involves regulation of central metabolic pathways in marine planktonic bacteria[J]. Proceedings of the Combustion Institute, 2014, 111(35): E3650-3658. |
37 | CHEN Q, VAN DER STEEN J B, DEKKER H L, et al. Expression of holo-proteorhodopsin in Synechocystis sp. PCC 6803[J]. Metabolic Engineering, 2016, 35: 83-94. |
38 | KIRST H, FORMIGHIERI C, MELIS A. Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size[J]. Biochimica et Biophysica Acta, 2014, 1837(10): 1653-1664. |
39 | GARTZIA-RIVERO L, BANUELOS J, LOPEZ-ARBELOA I. Photoactive nanomaterials inspired by nature: ltl zeolite doped with laser dyes as artificial light harvesting systems[J]. Materials, 2017, 10(5): ma10050495. |
40 | CHOWDHURY F A, TRUDEAU M L, GUO H, et al. A photochemical diode artificial photosynthesis system for unassisted high efficiency overall pure water splitting[J]. Nature Communications, 2018, 9: 1707. |
41 | ZHANG X, WU Z, ZHANG X, et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures[J]. Nature Communications, 2017, 8: 14675. |
42 | SAKIMOTO K K, WONG A B, YANG P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77. |
43 | DEMPO Y, OHTA E, NAKAYAMA Y, et al. Molar-based targeted metabolic profiling of cyanobacterial strains with potential for biological production[J]. Metabolites, 2014, 4(2): 499-516. |
44 | ANGERMAYR S A, GORCHS ROVIRA A, HELLINGWERF K J. Metabolic engineering of cyanobacteria for the synthesis of commodity products[J]. Trends in Biotechnology, 2015, 33(6): 352-361. |
45 | KUDOH K, KAWANO Y, HOTTA S, et al. Prerequisite for highly efficient isoprenoid production by cyanobacteria discovered through the over-expression of 1-deoxy-d-xylulose 5-phosphate synthase and carbon allocation analysis[J]. Journal of Bioscience and Bioengineering, 2014, 118(1): 20-28. |
46 | NGAN C Y, WONG C H, CHOI C, et al. Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae[J]. Nature Plants, 2015, 1: 15107. |
47 | MATSON M M, ATSUMI S. Photomixotrophic chemical production in cyanobacteria[J]. Current Opinion in Biotechnology, 2018, 50: 65-71. |
48 | CLAASSENS N J, SOUSA D Z, DOS SANTOS V A, et al. Harnessing the power of microbial autotrophy[J]. Nature Reviews Microbiology, 2016, 14(11): 692-706. |
49 | HENARD C A, SMITH H, DOWE N, et al. Bioconversion of methane to lactate by an obligate methanotrophic bacterium[J]. Scientific Reports, 2016, 6: 21585. |
50 | SCHWANDER T, BORZYSKOWSKI L S, BURGENER S, et al. A synthetic pathway for the fixation of carbon dioxide in vitro[J]. Science, 2016, 354(6314): 900-904. |
51 | BROWN S H, BASHKIROVA L, BERKA R, et al. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid[J]. Applied Microbiology and Biotechnology, 2013, 97(20): 8903-8912. |
52 | KUPRIYANOVA E, VILLAREJO A, MARKELOVA A, et al. Extracellular carbonic anhydrases of the stromatolite-forming cyanobacterium Microcoleus chthonoplastes [J]. Microbiology, 2007, 153(4): 1149-1156. |
53 | BONACCI W, TENG P K, AFONSO B, et al. Modularity of a carbon-fixing protein organelle[J]. Proceedings of the Combustion Institute, 2012, 109(2): 478-483. |
54 | ZHANG Y, ZHOU J, ZHANG Y, et al. Auxiliary module promotes the synthesis of carboxysomes in E. coli to achieve high-efficiency CO2 assimilation[J]. ACS Synthetic Biology, 2021, 10(4): 707-715. |
55 | MATTOZZI M, ZIESACK M, VOGES M J, et al. Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: Toward horizontal transfer of autotrophic growth[J]. Metabolic Engineering, 2013, 16: 130-139. |
56 | GONG F, LIU G, ZHAI X, et al. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation[J]. Biotechnology for Biofuels, 2015, 8: 86. |
57 | ANTONOVSKY N, GLEIZER S, NOOR E, et al. Sugar synthesis from CO2 in Escherichia coli [J]. Cell, 2016, 166(1): 115-125. |
58 | FRADINHO J C, DOMINGOS J M, CARVALHO G, et al. Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae[J]. Bioresource Technology, 2013, 132: 146-153. |
59 | SAID S BEN, TECON R, BORER B, et al. The engineering of spatially linked microbial consortia-potential and perspectives[J]. Current Opinion in Biotechnology, 2020, 62: 137-145. |
60 | HU P, CHAKRABORTY S, KUMAR A, et al. Integrated bioprocess for conversion of gaseous substrates to liquids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(14): 3773-3778. |
61 | LOWE H, HOBMEIER K, MOOS M, et al. Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB [J]. Biotechnology for Biofuels, 2017, 10(190): 1-11. |
62 | TONG T, CHEN X, HU G, et al. Engineering microbial metabolic energy homeostasis for improved bioproduction[J]. Biotechnology Advances, 2021, 53: 107841. |
63 | BRAAKMAN R, SMITH E. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium[J]. PLoS One, 2014, 9(2): e87950. |
64 | GUADALUPE-MEDINA V, WISSELINK H W, LUTTIK M A, et al. Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast[J]. Biotechnology for Biofuels, 2013, 6: 125. |
65 | HU G, ZHOU J, CHEN X, et al. Engineering synergetic CO2-fixing pathways for malate production[J]. Metabolic Engineering, 2018, 47: 496-504. |
66 | LIEW F, HENSTRA A M, KPKE M, et al. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production[J]. Metabolic Engineering, 2017, 40: 104-114. |
67 | WU Z, WANG J, LIU J, et al. Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO2 [J]. Microbial Cell Factories, 2019, 18: 15. |
68 | HU G, LI Z, MA D, et al. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals[J]. Nature Catalysis, 2021, 4(5): 395-406. |
69 | GAI P, YU W, ZHAO H, et al. Solar-powered organic semiconductor-bacteria biohybrids for CO2 reduction into acetic acid[J]. Angewandte Chemie International Edition, 2020, 59(18): 7224-7229. |
70 | JONES S W, FAST A G, CARLSON E D, et al. CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion[J]. Nature Communications, 2016, 7: 12800. |
71 | HU L, GUO S, WANG B, et al. Bio-valorization of C1 gaseous substrates into bioalcohols: Potentials and challenges in reducing carbon emissions[J]. Biotechnology Advances, 2022, 59: 107954. |
72 | XIAO L, LIU G, GONG F, et al. A Minimized synthetic carbon fixation cycle[J]. ACS Catalysis, 2021, 12(1): 799-808. |
73 | WU C, LO J, URBAN C, et al. Acetyl-CoA synthesis through a bicyclic carbon-fixing pathway in gas-fermenting bacteria[J]. Nature Synthesis, 2022, 1(8): 615-625. |
74 | LUO S, LIN P P, NIEH L Y, et al. A cell-free self-replenishing CO2-fixing system[J]. Nature Catalysis, 2022, 5(2): 154-162. |
75 | YISHAI O, BOUZON M, DORING V, et al. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli [J]. ACS Synthetic Biology, 2018, 7(9): 2023-2028. |
76 | PAVAN M, REINMETS K, GARG S, et al. Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy[J]. Metabolic Engineering, 2022, 71: 117-141. |
77 | RODRIGUES R M, GUAN X, IÑIGUEZ J A, et al. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction[J]. Nature Catalysis, 2019, 2(5): 407-414. |
78 | TREMBLAY P L, XU M, CHEN Y, et al. Nonmetallic abiotic-biological hybrid photocatalyst for visible water splitting and carbon dioxide reduction[J]. iScience, 2020, 23(1): 100784. |
79 | LI H, OPGENORTH P H, WERNICK D G, et al. Integrated electromicrobial conversion of CO2 to higher slcohols[J]. Science, 2012, 335(6076): 1596. |
80 | MILLER T E, BENEYTON T, SCHWANDER T, et al. Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts[J]. Science, 2020, 368(6491): 649-654. |
81 | GLEIZER S, BEN-NISSAN R, BAR-ON Y M, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2 [J]. Cell, 2019, 179(6): 1255-1263. |
82 | PENA D A, GASSER B, ZANGHELLINI J, et al. Metabolic engineering of Pichia pastoris [J]. Metabolic Engineering, 2018, 50: 2-15. |
[1] | GUO Feng, ZHANG Shangjie, JIANG Yujia, JIANG Wankui, XIN Fengxue, ZHANG Wenming, JIANG Min. Biotransformation of one-carbon resources by yeast [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 30-39. |
[2] | LIU Yali, ZHANG Hongwei, KANG Xiaorong. Effect and mechanisms of microplastics on anaerobic digestion of sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5037-5046. |
[3] | LI Ling, YU Yong, HU Yonghong. Research progress in production of lipstatinfermentation [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2251-2257. |
[4] | GUO Liang, GAO Cong, ZHANG Li, CHEN Xiulai, LIU Liming. Advances in the suitability of artificial metabolic pathways [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1252-1261. |
[5] | ZHOU Zikang, XU Ping. Application and progress of global transcription regulation in microbial cell factory construction [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1248-1251. |
[6] | GAO Cong, GUO Liang, HU Guipeng, CHEN Xiulai, LIU Liming. Advances of metabolic flux regulation in microbial cell factories [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6807-6817. |
[7] | Hong CHEN, Jun WU, Chen CHEN, Zhi TU, Li’e YU, Enzhe YANG, Min YANG, Benyi XIAO. Advances in biohydrogen production from anaerobic co-fermentation of organic wastes [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 440-450. |
[8] | Liju BAI, Bo HOU, Bo JIANG, Siming CHEN. Research progress of CO2 fixation by chemical absorbents enhanced microalgae [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 106-114. |
[9] | Yan JIANG,Heping ZHOU,Zhe ZHANG,Hongbing LIU,Shunxiang SHEN. Bioremediation of contaminated sites by petroleum hydrocarbon under low temperature environment [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 419-428. |
[10] | Taotao TANG,Jiang LI,Zhao YANG,Fuliang XIANG,Yuehu WANG,Yancheng LI. Research progress in on microbial community structure of anaerobic digestion of sludge [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 320-328. |
[11] | Lu CHEN,Dingyu LIU,Baowei WANG,Yu jiao ZHAO,Guangtao JIA,Tao CHEN,Zhiwen WANG. Advances in acetyl coenzyme A metabolic engineering with Escherichia coli [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4218-4226. |
[12] | Pengcheng CHANG, Yang YU, Ying WANG, Chun LI. Combinatorial regulation strategies for efficient synthesis of terpenoids in Saccharomyces cerevisiae [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 598-605. |
[13] | CHENG Shen, ZHANG Songhong, YUN Junxian. Recent advances in microbial synthesis of α-ketoisocaproate [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4821-4829. |
[14] | YU Xinlei, MAO Yufeng, ZHANG Xiaoxia, LU Lingxue, WANG Zhiwen, CHEN Tao. Recent progress in microbial production of 3-hydroxypropionic acid [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4427-4436. |
[15] | TANG Ruiqi, XIONG Liang, CHENG Cheng, ZHAO Xinqing, BAI Fengwu. Progress of research on construction and optimization of recombinant Saccharomyces cerevisiae strains for cellulosic ethanol production [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3119-3128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |