Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (7): 3719-3730.DOI: 10.16085/j.issn.1000-6613.2021-1788
• Materials science and technology • Previous Articles Next Articles
HE Meiying(), YUE Xuejie, ZHANG Tao(), QIU Fengxian()
Received:
2021-08-20
Revised:
2021-10-17
Online:
2022-07-23
Published:
2022-07-25
Contact:
ZHANG Tao,QIU Fengxian
通讯作者:
张涛,邱凤仙
作者简介:
何美莹(2000—),女,硕士研究生,研究方向为材料化学。E-mail: 基金资助:
CLC Number:
HE Meiying, YUE Xuejie, ZHANG Tao, QIU Fengxian. Infrared radiation control principle and its material research progress in thermal management application[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3719-3730.
何美莹, 岳学杰, 张涛, 邱凤仙. 红外辐射调控原理及其在热管理应用中的材料研究进展[J]. 化工进展, 2022, 41(7): 3719-3730.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1788
类型 | 材料 | 制备工艺 | 性能参数 | 温度变化/℃ | 参考文献 |
---|---|---|---|---|---|
无机氧化物基 | Al-doped ZnO Sb-doped SnO2 ZnO/Ag ZnO/Ag/ZnO SiO2+TiO2 SiO2@TiO2 | 磁控溅射法 双滴定共沉淀法 水热法 磁控溅射法 喷涂法 溶剂热法 | Einf=41%;Tvis=81.8% Tvis=80.1%;R=76.7% Tvis=62%;R=90% E=9.6%;Tvis=87.1% R=90.7%;Einf=90.1% R=91.34% | — — — — -5~-8℃ — | [ [ [ [ [ [ |
复合氧化物 | Bi4Ti3O12 La2Mo2O7 | 水热法 丙烯酰胺凝胶技术 | R=95% R=61%~75% | -10℃ -4.5℃ | [ [ |
有机物基 | PMMA/TiO2 Cs0.32WO3/PMMA PEO PDMS PDMS Ag/PVB TPX PDMS/Si 3DPCA/SiO2 ZnO@ZIF-8 | 乳液聚合法 原位聚合法 静电纺丝工艺 快速镀膜法 — 喷涂法 — 电子束蒸发 相转化法 液相自组装法 | — R>90%;Tvis>70% R=96.3%;Einf=78% P=120W/m2 R=93%;Einf=94% Tvis=83%;R=69.8% R=96%;Einf=93% P=127W/m2 R=96%;Einf=95% R=90%;Einf=95% | -11.2℃ -9.6℃ -3~-5℃ -9.5℃或-11.0℃ -5℃或+18℃ — -2~-14℃ -8.2℃或-8.4℃ -6.2℃或-8.6℃ -7.6℃ | [ [ [ [ [ [ [ [ [ [ |
光子结构 | SiO2 SiO2/Si3N4 HfO2/SiO2/Ag Al2O3/Si3N4/SiO2 | 光刻法 — — 真空沉积法 | — Einf=80% R=97%;P=40.1W/m2 Einf=87% | -13℃ -11℃ -4.9℃ -8.2℃ | [ [ [ [ |
冷却织物 | PA6/SiO2 PE PDMS PDMS/PE PDMS/Al2O3 | — 纤维挤压工艺 — — — | — E=20% — Einf>96% Einf=96%;R=95% | -0.4~-1.7℃ -2.3℃ -5.6℃ -5~-6℃ -5.1℃ | [ [ [ [ [ |
保温织物 | Ag/纤维素/CNT PET/CNFs/NPs 丝素/氧化石墨烯 | 泡沫加工工艺; 磁控溅射法 静电纺丝法 同轴湿纺法; 冷冻干燥 | — — — | — +18℃ +2.6℃ | [ [ [ |
智能双模织物 | PE/C/Cu/PE MnO2/Ag ZrN/TiO2 PVDF/ZnO/CNT/Ag/PDMS | — 层层组装法; 磁控溅射法 磁控溅射法 喷涂法 | — R1=81.6%;R2=39.5% R=90%;Einf=70% Einf=89.2%;R=89.5% | ±6.5℃ +8.2℃或-1℃ +4℃或-22℃ 4~12℃或-8~-11℃ | [ [ [ [ |
类型 | 材料 | 制备工艺 | 性能参数 | 温度变化/℃ | 参考文献 |
---|---|---|---|---|---|
无机氧化物基 | Al-doped ZnO Sb-doped SnO2 ZnO/Ag ZnO/Ag/ZnO SiO2+TiO2 SiO2@TiO2 | 磁控溅射法 双滴定共沉淀法 水热法 磁控溅射法 喷涂法 溶剂热法 | Einf=41%;Tvis=81.8% Tvis=80.1%;R=76.7% Tvis=62%;R=90% E=9.6%;Tvis=87.1% R=90.7%;Einf=90.1% R=91.34% | — — — — -5~-8℃ — | [ [ [ [ [ [ |
复合氧化物 | Bi4Ti3O12 La2Mo2O7 | 水热法 丙烯酰胺凝胶技术 | R=95% R=61%~75% | -10℃ -4.5℃ | [ [ |
有机物基 | PMMA/TiO2 Cs0.32WO3/PMMA PEO PDMS PDMS Ag/PVB TPX PDMS/Si 3DPCA/SiO2 ZnO@ZIF-8 | 乳液聚合法 原位聚合法 静电纺丝工艺 快速镀膜法 — 喷涂法 — 电子束蒸发 相转化法 液相自组装法 | — R>90%;Tvis>70% R=96.3%;Einf=78% P=120W/m2 R=93%;Einf=94% Tvis=83%;R=69.8% R=96%;Einf=93% P=127W/m2 R=96%;Einf=95% R=90%;Einf=95% | -11.2℃ -9.6℃ -3~-5℃ -9.5℃或-11.0℃ -5℃或+18℃ — -2~-14℃ -8.2℃或-8.4℃ -6.2℃或-8.6℃ -7.6℃ | [ [ [ [ [ [ [ [ [ [ |
光子结构 | SiO2 SiO2/Si3N4 HfO2/SiO2/Ag Al2O3/Si3N4/SiO2 | 光刻法 — — 真空沉积法 | — Einf=80% R=97%;P=40.1W/m2 Einf=87% | -13℃ -11℃ -4.9℃ -8.2℃ | [ [ [ [ |
冷却织物 | PA6/SiO2 PE PDMS PDMS/PE PDMS/Al2O3 | — 纤维挤压工艺 — — — | — E=20% — Einf>96% Einf=96%;R=95% | -0.4~-1.7℃ -2.3℃ -5.6℃ -5~-6℃ -5.1℃ | [ [ [ [ [ |
保温织物 | Ag/纤维素/CNT PET/CNFs/NPs 丝素/氧化石墨烯 | 泡沫加工工艺; 磁控溅射法 静电纺丝法 同轴湿纺法; 冷冻干燥 | — — — | — +18℃ +2.6℃ | [ [ [ |
智能双模织物 | PE/C/Cu/PE MnO2/Ag ZrN/TiO2 PVDF/ZnO/CNT/Ag/PDMS | — 层层组装法; 磁控溅射法 磁控溅射法 喷涂法 | — R1=81.6%;R2=39.5% R=90%;Einf=70% Einf=89.2%;R=89.5% | ±6.5℃ +8.2℃或-1℃ +4℃或-22℃ 4~12℃或-8~-11℃ | [ [ [ [ |
1 | KOLÅS T, RØYSET A, GRANDCOLAS M, et al. Cool coatings with high near infrared transmittance for coil coated aluminium[J]. Solar Energy Materials and Solar Cells, 2019, 196: 94-104. |
2 | CHI F A, XU L M, PENG C H. Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving[J]. Applied Energy, 2020, 266: 114865. |
3 | LI X Q, SUN B W, SUI C X, et al. Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings[J]. Nature Communications, 2020, 11: 6101. |
4 | NIE W, TONG Q D, LI Q Q, et al. From waste to functional materials: a multifunctional electromagnetic interference shielding composite from waste rock wool[J]. ACS Applied Electronic Materials, 2021, 3(5): 2187-2194. |
5 | BOBROVA E, PILIPENKO A, ZHUKOV A. Insulating sheath system and energy efficiency of buildings[J] . E3S Web of Conferences, 2019, 91: 02019. |
6 | PENG Y C, CUI Y. Advanced textiles for personal thermal management and energy[J]. Joule, 2020, 4(4): 724-742. |
7 | KHANDELWAL H, SCHENNING A P H J, DEBIJE M G. Infrared regulating smart window based on organic materials[J]. Advanced Energy Materials, 2017, 7(14): 1602209. |
8 | KE Y J, BALIN I, WANG N, et al. Two-dimensional SiO2/VO2 photonic crystals with statically visible and dynamically infrared modulated for smart window deployment[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 33112-33120. |
9 | JEONG S M, AHN J, CHOI Y K, et al. Development of a wearable infrared shield based on a polyurethane-antimony tin oxide composite fiber[J]. NPG Asia Materials, 2020, 12: 32. |
10 | HOSSAIN M M, GU M. Radiative cooling: principles, progress, and potentials[J]. Advanced Science, 2016, 3(7): 1500360. |
11 | CHEN J, WEI H, BAO H, et al. Millefeuille-inspired thermally conductive polymer nanocomposites with overlapping BN nanosheets for thermal management applications[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 31402-31410. |
12 | 吴洋.红外辐射材料及其应用[J]. 佛山陶瓷, 2018, 28(5): 1-4. |
WU Yang. Infrared radiation material and its application[J]. Foshan Ceramics, 2018, 28(5): 1-4. | |
13 | WU Y P, KRISHNAN P, ZHANG M H, et al. Using photocatalytic coating to maintain solar reflectance and lower cooling energy consumption of buildings[J]. Energy and Buildings, 2018, 164: 176-186. |
14 | 任首龙, 陆庭中, 唐波,等. 辐射冷却材料研究进展[J]. 化工进展, 2022, 41(4): 1982-1993. |
REN Shoulong, LU Tingzhong, TANG Bo, et al. Research progress on radiative cooling materials[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1982-1993. | |
15 | LEI J W, KUMARASAMY K, ZINGRE K T, et al. Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics[J]. Applied Energy, 2017, 190: 57-63. |
16 | LIU J, ZHOU Z, ZHANG J, et al. Advances and challenges in commercializing radiative cooling[J]. Materials Today Physics, 2019, 11: 100161. |
17 | KIM H, MCSHERRY S, BROWN B, et al. Selectively enhancing solar scattering for direct radiative cooling through control of polymer nanofiber morphology[J]. ACS Applied Materials & Interfaces, 2020, 12(39): 43553-43559. |
18 | 徐冰洁, 陈琦, 刘鹏飞, 等. 高发射率红外辐射材料的研究进展[J]. 功能材料, 2018, 49(12): 12062-12070. |
XU Bingjie, CHEN Qi, LIU Pengfei, et al. Progress and prospect of high emissivity infrared radiation materials[J]. Journal of Functional Materials, 2018, 49(12): 12062-12070. | |
19 | LI H, ZHAO J, LI M X, et al. Performance analysis of passive cooling for photovoltaic modules and estimation of energy-saving potential[J]. Solar Energy, 2019, 181: 70-82. |
20 | DONG S M, QUEK J Y, VAN HERK A M, et al. Polymer-encapsulated TiO2 for the improvement of NIR reflectance and total solar reflectance of cool coatings[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 17901-17910. |
21 | 陈亚君, 陕绍云, 贾庆明, 等. 纳米锡基隔热透明涂料研究进展[J]. 化工新型材料, 2019, 47(12): 22-26. |
CHEN Yajun, SHAN Shaoyun, JIA Qingming, et al. Research advance of nano tin-based thermal insulation coating[J]. New Chemical Materials, 2019, 47(12): 22-26. | |
22 | LIU J X, RAN S, FAN C Y, et al. One pot synthesis of Pt-doped Cs x WO3 with improved near infrared shielding for energy-saving film applications[J]. Solar Energy, 2019, 178: 17-24. |
23 | CHEN Y H, SHIH F Y, LEE M T, et al. Development of lightweight energy-saving glass and its near-field electromagnetic analysis[J]. Energy, 2020, 193: 116812. |
24 | WEI G Y, DING J C, ZHANG T, et al. In situ fabrication of ZnO nanorods/Ag hybrid film with high mid-infrared reflectance for applications in energy efficient windows[J]. Optical Materials, 2019, 94: 322-329. |
25 | ZHAO H X, SUN Q Q, ZHOU J, et al. Switchable cavitation in silicone coatings for energy-saving cooling and heating[J]. Advanced Materials, 2020, 32(29): 2000870. |
26 | LIN S, WANG H Y, ZHANG X N, et al. Direct spray-coating of highly robust and transparent Ag nanowires for energy saving windows[J]. Nano Energy, 2019, 62: 111-116. |
27 | GUO T C, XU G Y, TAN S J, et al. Controllable synthesis of ZnO with different morphologies and their morphology-dependent infrared emissivity in high temperature conditions[J]. Journal of Alloys and Compounds, 2019, 804: 503-510. |
28 | SUN K W, TANG X F, YANG C L, et al. Preparation and performance of low-emissivity Al-doped ZnO films for energy-saving glass[J]. Ceramics International, 2018, 44(16): 19597-19602. |
29 | SHEN B X, WANG Y H, LU L, et al. Synthesis and characterization of Sb-doped SnO2 with high near-infrared shielding property for energy-efficient windows by a facile dual-titration co-precipitation method[J]. Ceramics International, 2020, 46(11): 18518-18525. |
30 | DANG S C, YI Y, YE H. A visible transparent solar infrared reflecting film with a low long-wave emittance[J]. Solar Energy, 2020, 195: 483-490. |
31 | YAO Y J, CHEN Z, WEI W, et al. Cs0.32WO3/PMMA nanocomposite via in situ polymerization for energy saving windows[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110656. |
32 | LI D, LIU X, LI W, et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling[J]. Nature Nanotechnology, 2021, 16(2): 153-158. |
33 | ZHOU L, SONG H M, LIANG J W, et al. A polydimethylsiloxane-coated metal structure for all-day radiative cooling[J]. Nature Sustainability, 2019, 2(8): 718-724. |
34 | 李培, 秦亮, 何红, 等. 含SiO2/SiC可昼夜降温辐射冷却膜的制备与实验研究[J]. 材料导报, 2021, 35(14): 14185-14189. |
LI Pei, QIN Liang, HE Hong, et al. Preparation and experimental study of radiation cooling film with SiO2/SiC[J]. Materials Reports, 2021, 35(14): 14185-14189. | |
35 | ZHU L X, RAMAN A P, FAN S H. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody[J]. PNAS, 2015, 112(40): 12282-12287. |
36 | YAO K Q, MA H C, HUANG M, et al. Near-perfect selective photonic crystal emitter with nanoscale layers for daytime radiative cooling[J]. ACS Applied Nano Materials, 2019, 2(9): 5512-5519. |
37 | RAMAN A P, ANOMA M A, ZHU L X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540-544. |
38 | CHAE D, KIM M, JUNG P H, et al. Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8073-8081. |
39 | YUAN J C, YIN H L, CAO P, et al. Daytime radiative cooling of enclosed water using spectral selective metamaterial based cooling surfaces[J]. Energy for Sustainable Development, 2020, 57: 22-31. |
40 | KOU J L, JURADO Z, CHEN Z, et al. Daytime radiative cooling using near-black infrared emitters[J]. ACS Photonics, 2017, 4(3): 626-630. |
41 | XIANG B, ZHANG R, LUO Y L, et al. 3D Porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling[J]. Nano Energy, 2021, 81: 105600. |
42 | KANG H J, QIAO Y D, LI Y, et al. Keep cool: polyhedral ZnO@ZIF-8 polymer coatings for daytime radiative cooling[J]. Industrial & Engineering Chemistry Research, 2020, 59(34): 15226-15232. |
43 | BAO H, YAN C, WANG B X, et al. Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling[J]. Solar Energy Materials and Solar Cells, 2017, 168: 78-84. |
44 | 王小海, 郜学云, 刘跃进, 等. 钛白粉的性能及其在涂料中的应用[J]. 石化技术, 2019, 26(6): 171, 181. |
WANG Xiaohai, GAO Xueyun, LIU Yuejin, et al. Performance of titanium dioxide pigment and its application in paints[J]. Petrochemical Industry Technology, 2019, 26(6): 171, 181. | |
45 | BAO Y, GUO R Y, MA J Z. Hierarchical flower-like hollow SiO2@TiO2 spheres with enhanced thermal insulation and ultraviolet resistance performances for building coating[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24250-24261. |
46 | 张毅鹏. 分析彩色建筑节能涂料的制备和性能[J]. 建材与装饰, 2020(17): 96-97. |
ZHANG Yipeng. Preparation and performance of color building energy-saving paints[J]. Construction Materials & Decoration, 2020(17): 96-97. | |
47 | MEENAKSHI P, SELVARAJ M. Bismuth titanate as an infrared reflective pigment for cool roof coating[J]. Solar Energy Materials and Solar Cells, 2018, 174: 530-537. |
48 | HAN A J, YE M Q, LIU L L, et al. Estimating thermal performance of cool coatings colored with high near-infrared reflective inorganic pigments: iron doped La2Mo2O7 compounds[J]. Energy and Buildings, 2014, 84: 698-703. |
49 | RAN S, LIU J X, SHI F, et al. Greatly improved heat-shielding performance of K x WO3 by trace Pt doping for energy-saving window glass applications[J]. Solar Energy Materials and Solar Cells, 2018, 174: 342-350. |
50 | MA Y, CHEN Y, WANG Z F, et al. Controllable near-infrared reflectivity and infrared emissivity with substitutional iron-doped orthorhombic YMnO3 coatings[J]. Solar Energy, 2020, 206: 778-786. |
51 | LI T, ZHAI Y, HE S M, et al. A radiative cooling structural material[J]. Science, 2019, 364(6442): 760-763. |
52 | JIA C, CHEN C J, MI R Y, et al. Clear wood toward high-performance building materials[J]. ACS Nano, 2019, 13(9): 9993-10001. |
53 | HSU P C, SONG A Y, CATRYSSE P B, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016, 353(6303): 1019-1023. |
54 | 陈凤琴, 魏娟. 柔性可穿戴纺织传感器的研究进展[J]. 上海纺织科技, 2021, 49(6): 13-18, 42. |
CHEN Fengqin, WEI Juan. Research progress of flexible wearable textile sensors[J]. Shanghai Textile Science & Technology, 2021, 49(6): 13-18, 42. | |
55 | ZHANG H W, LY K C S, LIU X H, et al. Biologically inspired flexible photonic films for efficient passive radiative cooling[J]. PNAS, 2020, 117(26): 14657-14666. |
56 | YANG M, ZOU W Z, GUO J, et al. Bioinspired “skin” with cooperative thermo-optical effect for daytime radiative cooling[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25286-25293. |
57 | DAI B, LI K, SHI L X, et al. Bioinspired Janus textile with conical micropores for human body moisture and thermal management[J]. Advanced Materials, 2019, 31(41): 1904113. |
58 | XIAO R C, HOU C Y, YANG W F, et al. Infrared-radiation-enhanced nanofiber membrane for sky radiative cooling of the human body[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44673-44681. |
59 | PENG Y C, CHEN J, SONG A Y, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability, 2018, 1(2): 105-112. |
60 | WU W C, LIN S H, WEI M M, et al. Flexible passive radiative cooling inspired by Saharan silver ants[J]. Solar Energy Materials and Solar Cells, 2020, 210: 110512. |
61 | ZENG S H, PIAN S J, SU M Y, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021,373(6555): 692-696. |
62 | YUE X J, HE M Y, ZHANG T, et al. Laminated fibrous membrane inspired by polar bear pelt for outdoor personal radiation management[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 12285-12293. |
63 | QIU K L, ELHASSAN A, TIAN T H, et al. Highly flexible, efficient, and sandwich-structured infrared radiation heating fabric[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 11016-11025. |
64 | WANG Z Q, YANG H W, LI Y, et al. Robust silk fibroin/graphene oxide aerogel fiber for radiative heating textiles[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15726-15736. |
65 | HSU P C, LIU C, SONG A Y, et al. A dual-mode textile for human body radiative heating and cooling[J]. Science Advances, 2017, 3(11): e1700895. |
66 | GU B, HE M Y, YANG D Y, et al. Wearable Janus MnO2 hybrid membranes for thermal comfort management applications[J]. Applied Surface Science, 2020, 509: 145170. |
67 | QIU S, JIA H, JIANG S X. Fabrication and characterization of thermal management fabric with heating and cooling modes through magnetron sputtering[J]. Materials Letters, 2021, 300: 130217. |
68 | SONG Y N, LEI M Q, HAN D L, et al. Multifunctional membrane for thermal management applications[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19301-19311. |
69 | GAO Q, WU X M, CAI L G. Dual functionality of K0.3WO3/Ag2O nanocomposites for smart window: energy saving and visible photocatalytic self-cleaning performance[J]. Solar Energy Materials and Solar Cells, 2019, 196: 111-118. |
[1] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[2] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[3] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[4] | WANG Darui, SUN Hongmin, XUE Mingwei, WANG Yiyan, LIU Wei, YANG Weimin. Efficient synthesis of fully crystalline ZSM-5 zeolite catalyst by microwave method and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3582-3588. |
[5] | LI Jiyan, JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi. Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3611-3622. |
[6] | LIU Zhanjian, FU Yuxin, REN Lina, ZHANG Xiguang, YUAN Zhongtao, YANG Nan, WANG Huaiyuan. New research progress of superhydrophobic coatings in the field of anti-corrosion and anti-scaling [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2999-3011. |
[7] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[8] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[9] | LI Xue, WANG Yanjun, WANG Yuchao, TAO Shengyang. Recent advances in bionic surfaces for fog collection [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2486-2503. |
[10] | HE Yang, LI Siying, LI Chuanqiang, YUAN Xiaoya, ZHENG Xuxu. Anticorrosion performance of thermal reduction graphene oxide /epoxy resin composite coating [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1983-1994. |
[11] | XIA Shaobo, DUAN Lu, WANG Jianpeng, JI Renshan. Effect of water content of fly ash on the performance of coupling reinforced electrostatic-fabric integrated precipitator [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2101-2108. |
[12] | ZHANG He, LI Xiaoke, XIONG Ying, WEN Jin. Desalination and pollution treatment of fracturing flow-back fluid based on interfacial solar evaporation of hydrogel [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1073-1079. |
[13] | GU Haiyang, WANG Dong, ZONG Yongzhong, FU Shaohai. Preparation and property of tanning sludge based biomass flame retardant coating protein for cotton fabric [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 641-649. |
[14] | DU Tao, MA Jinwei, CHEN Qianqian, FANG Hao, CHEN Bingzhang, CHEN Houren. Comparison test and numerical simulation analysis of PV/T module composite cooling mode [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 722-730. |
[15] | HU Jinjian, LI Long, DONG Zijing. Application of carbon nanomaterials in PU yarn-based flexible strain sensors [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 872-883. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |